| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptcom.3 |
|
| 2 |
|
cnmptcom.4 |
|
| 3 |
|
cnmptcom.6 |
|
| 4 |
|
txtopon |
|
| 5 |
1 2 4
|
syl2anc |
|
| 6 |
|
cntop2 |
|
| 7 |
3 6
|
syl |
|
| 8 |
|
toptopon2 |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
cnf2 |
|
| 11 |
5 9 3 10
|
syl3anc |
|
| 12 |
|
eqid |
|
| 13 |
12
|
fmpo |
|
| 14 |
|
ralcom |
|
| 15 |
13 14
|
bitr3i |
|
| 16 |
11 15
|
sylib |
|
| 17 |
|
eqid |
|
| 18 |
17
|
fmpo |
|
| 19 |
16 18
|
sylib |
|
| 20 |
19
|
ffnd |
|
| 21 |
|
fnov |
|
| 22 |
20 21
|
sylib |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfcv |
|
| 26 |
|
nfv |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfmpo2 |
|
| 29 |
27 28 23
|
nfov |
|
| 30 |
|
nfmpo1 |
|
| 31 |
23 30 27
|
nfov |
|
| 32 |
29 31
|
nfeq |
|
| 33 |
26 32
|
nfim |
|
| 34 |
|
nfv |
|
| 35 |
|
nfmpo1 |
|
| 36 |
25 35 24
|
nfov |
|
| 37 |
|
nfmpo2 |
|
| 38 |
24 37 25
|
nfov |
|
| 39 |
36 38
|
nfeq |
|
| 40 |
34 39
|
nfim |
|
| 41 |
|
oveq2 |
|
| 42 |
|
oveq1 |
|
| 43 |
41 42
|
eqeq12d |
|
| 44 |
43
|
imbi2d |
|
| 45 |
|
oveq1 |
|
| 46 |
|
oveq2 |
|
| 47 |
45 46
|
eqeq12d |
|
| 48 |
47
|
imbi2d |
|
| 49 |
|
rsp2 |
|
| 50 |
49 16
|
syl11 |
|
| 51 |
12
|
ovmpt4g |
|
| 52 |
51
|
3com12 |
|
| 53 |
17
|
ovmpt4g |
|
| 54 |
52 53
|
eqtr4d |
|
| 55 |
54
|
3expia |
|
| 56 |
50 55
|
syld |
|
| 57 |
23 24 25 33 40 44 48 56
|
vtocl2gaf |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
3impib |
|
| 60 |
59
|
mpoeq3dva |
|
| 61 |
22 60
|
eqtr4d |
|
| 62 |
2 1
|
cnmpt2nd |
|
| 63 |
2 1
|
cnmpt1st |
|
| 64 |
2 1 62 63 3
|
cnmpt22f |
|
| 65 |
61 64
|
eqeltrd |
|