Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptcom.3 | |
|
cnmptcom.4 | |
||
cnmptcom.6 | |
||
Assertion | cnmptcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptcom.3 | |
|
2 | cnmptcom.4 | |
|
3 | cnmptcom.6 | |
|
4 | txtopon | |
|
5 | 1 2 4 | syl2anc | |
6 | cntop2 | |
|
7 | 3 6 | syl | |
8 | toptopon2 | |
|
9 | 7 8 | sylib | |
10 | cnf2 | |
|
11 | 5 9 3 10 | syl3anc | |
12 | eqid | |
|
13 | 12 | fmpo | |
14 | ralcom | |
|
15 | 13 14 | bitr3i | |
16 | 11 15 | sylib | |
17 | eqid | |
|
18 | 17 | fmpo | |
19 | 16 18 | sylib | |
20 | 19 | ffnd | |
21 | fnov | |
|
22 | 20 21 | sylib | |
23 | nfcv | |
|
24 | nfcv | |
|
25 | nfcv | |
|
26 | nfv | |
|
27 | nfcv | |
|
28 | nfmpo2 | |
|
29 | 27 28 23 | nfov | |
30 | nfmpo1 | |
|
31 | 23 30 27 | nfov | |
32 | 29 31 | nfeq | |
33 | 26 32 | nfim | |
34 | nfv | |
|
35 | nfmpo1 | |
|
36 | 25 35 24 | nfov | |
37 | nfmpo2 | |
|
38 | 24 37 25 | nfov | |
39 | 36 38 | nfeq | |
40 | 34 39 | nfim | |
41 | oveq2 | |
|
42 | oveq1 | |
|
43 | 41 42 | eqeq12d | |
44 | 43 | imbi2d | |
45 | oveq1 | |
|
46 | oveq2 | |
|
47 | 45 46 | eqeq12d | |
48 | 47 | imbi2d | |
49 | rsp2 | |
|
50 | 49 16 | syl11 | |
51 | 12 | ovmpt4g | |
52 | 51 | 3com12 | |
53 | 17 | ovmpt4g | |
54 | 52 53 | eqtr4d | |
55 | 54 | 3expia | |
56 | 50 55 | syld | |
57 | 23 24 25 33 40 44 48 56 | vtocl2gaf | |
58 | 57 | com12 | |
59 | 58 | 3impib | |
60 | 59 | mpoeq3dva | |
61 | 22 60 | eqtr4d | |
62 | 2 1 | cnmpt2nd | |
63 | 2 1 | cnmpt1st | |
64 | 2 1 62 63 3 | cnmpt22f | |
65 | 61 64 | eqeltrd | |