Metamath Proof Explorer


Theorem cnmptk1

Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypotheses cnmptk1.j φJTopOnX
cnmptk1.k φKTopOnY
cnmptk1.l φLTopOnZ
cnmptk1.a φxXyYAJCnL^koK
cnmptk1.b φzZBLCnM
cnmptk1.c z=AB=C
Assertion cnmptk1 φxXyYCJCnM^koK

Proof

Step Hyp Ref Expression
1 cnmptk1.j φJTopOnX
2 cnmptk1.k φKTopOnY
3 cnmptk1.l φLTopOnZ
4 cnmptk1.a φxXyYAJCnL^koK
5 cnmptk1.b φzZBLCnM
6 cnmptk1.c z=AB=C
7 2 adantr φxXKTopOnY
8 3 adantr φxXLTopOnZ
9 topontop KTopOnYKTop
10 2 9 syl φKTop
11 topontop LTopOnZLTop
12 3 11 syl φLTop
13 eqid L^koK=L^koK
14 13 xkotopon KTopLTopL^koKTopOnKCnL
15 10 12 14 syl2anc φL^koKTopOnKCnL
16 cnf2 JTopOnXL^koKTopOnKCnLxXyYAJCnL^koKxXyYA:XKCnL
17 1 15 4 16 syl3anc φxXyYA:XKCnL
18 17 fvmptelcdm φxXyYAKCnL
19 cnf2 KTopOnYLTopOnZyYAKCnLyYA:YZ
20 7 8 18 19 syl3anc φxXyYA:YZ
21 eqid yYA=yYA
22 21 fmpt yYAZyYA:YZ
23 20 22 sylibr φxXyYAZ
24 eqidd φxXyYA=yYA
25 eqidd φxXzZB=zZB
26 23 24 25 6 fmptcof φxXzZByYA=yYC
27 26 mpteq2dva φxXzZByYA=xXyYC
28 10 5 xkoco2cn φwKCnLzZBwL^koKCnM^koK
29 coeq2 w=yYAzZBw=zZByYA
30 1 4 15 28 29 cnmpt11 φxXzZByYAJCnM^koK
31 27 30 eqeltrrd φxXyYCJCnM^koK