| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptk1p.j |  | 
						
							| 2 |  | cnmptk1p.k |  | 
						
							| 3 |  | cnmptk1p.l |  | 
						
							| 4 |  | cnmptk1p.n |  | 
						
							| 5 |  | cnmptk1p.a |  | 
						
							| 6 |  | cnmptk1p.b |  | 
						
							| 7 |  | cnmptk1p.c |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | cnf2 |  | 
						
							| 10 | 1 2 6 9 | syl3anc |  | 
						
							| 11 | 10 | fvmptelcdm |  | 
						
							| 12 | 7 | eleq1d |  | 
						
							| 13 | 2 | adantr |  | 
						
							| 14 | 3 | adantr |  | 
						
							| 15 |  | nllytop |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 |  | topontop |  | 
						
							| 18 | 3 17 | syl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | xkotopon |  | 
						
							| 21 | 16 18 20 | syl2anc |  | 
						
							| 22 |  | cnf2 |  | 
						
							| 23 | 1 21 5 22 | syl3anc |  | 
						
							| 24 | 23 | fvmptelcdm |  | 
						
							| 25 |  | cnf2 |  | 
						
							| 26 | 13 14 24 25 | syl3anc |  | 
						
							| 27 | 8 | fmpt |  | 
						
							| 28 | 26 27 | sylibr |  | 
						
							| 29 | 12 28 11 | rspcdva |  | 
						
							| 30 | 8 7 11 29 | fvmptd3 |  | 
						
							| 31 | 30 | mpteq2dva |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | toponuni |  | 
						
							| 34 | 2 33 | syl |  | 
						
							| 35 |  | mpoeq12 |  | 
						
							| 36 | 32 34 35 | sylancr |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 37 38 | xkofvcn |  | 
						
							| 40 | 4 18 39 | syl2anc |  | 
						
							| 41 | 36 40 | eqeltrd |  | 
						
							| 42 |  | fveq1 |  | 
						
							| 43 |  | fveq2 |  | 
						
							| 44 | 42 43 | sylan9eq |  | 
						
							| 45 | 1 5 6 21 2 41 44 | cnmpt12 |  | 
						
							| 46 | 31 45 | eqeltrrd |  |