Metamath Proof Explorer


Theorem cnrefiisp

Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses cnrefiisp.a φA
cnrefiisp.n φ¬A
cnrefiisp.b φBFin
cnrefiisp.c C=B
Assertion cnrefiisp φx+yCyyAxyA

Proof

Step Hyp Ref Expression
1 cnrefiisp.a φA
2 cnrefiisp.n φ¬A
3 cnrefiisp.b φBFin
4 cnrefiisp.c C=B
5 eqid AwBAwA=AwBAwA
6 fvoveq1 z=wzA=wA
7 6 sneqd z=wzA=wA
8 7 cbviunv zBAzA=wBAwA
9 8 uneq2i AzBAzA=AwBAwA
10 9 infeq1i supAzBAzA*<=supAwBAwA*<
11 1 2 3 4 5 10 cnrefiisplem φx+wCwwAxwA
12 eleq1w w=ywy
13 neeq1 w=ywAyA
14 12 13 anbi12d w=ywwAyyA
15 fvoveq1 w=ywA=yA
16 15 breq2d w=yxwAxyA
17 14 16 imbi12d w=ywwAxwAyyAxyA
18 17 cbvralvw wCwwAxwAyCyyAxyA
19 18 rexbii x+wCwwAxwAx+yCyyAxyA
20 11 19 sylib φx+yCyyAxyA