Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnrefiisp.a | |
|
cnrefiisp.n | |
||
cnrefiisp.b | |
||
cnrefiisp.c | |
||
Assertion | cnrefiisp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | |
|
2 | cnrefiisp.n | |
|
3 | cnrefiisp.b | |
|
4 | cnrefiisp.c | |
|
5 | eqid | |
|
6 | fvoveq1 | |
|
7 | 6 | sneqd | |
8 | 7 | cbviunv | |
9 | 8 | uneq2i | |
10 | 9 | infeq1i | |
11 | 1 2 3 4 5 10 | cnrefiisplem | |
12 | eleq1w | |
|
13 | neeq1 | |
|
14 | 12 13 | anbi12d | |
15 | fvoveq1 | |
|
16 | 15 | breq2d | |
17 | 14 16 | imbi12d | |
18 | 17 | cbvralvw | |
19 | 18 | rexbii | |
20 | 11 19 | sylib | |