Metamath Proof Explorer


Theorem cnso

Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion cnso xxOr

Proof

Step Hyp Ref Expression
1 ltso <Or
2 eqid bc|deb=adc=aed<e=bc|deb=adc=aed<e
3 f1oiso a:1-1 ontobc|deb=adc=aed<e=bc|deb=adc=aed<eaIsom<,bc|deb=adc=aed<e
4 2 3 mpan2 a:1-1 ontoaIsom<,bc|deb=adc=aed<e
5 isoso aIsom<,bc|deb=adc=aed<e<Orbc|deb=adc=aed<eOr
6 soinxp bc|deb=adc=aed<eOrbc|deb=adc=aed<e×Or
7 5 6 bitrdi aIsom<,bc|deb=adc=aed<e<Orbc|deb=adc=aed<e×Or
8 4 7 syl a:1-1 onto<Orbc|deb=adc=aed<e×Or
9 1 8 mpbii a:1-1 ontobc|deb=adc=aed<e×Or
10 cnex V
11 10 10 xpex ×V
12 11 inex2 bc|deb=adc=aed<e×V
13 soeq1 x=bc|deb=adc=aed<e×xOrbc|deb=adc=aed<e×Or
14 12 13 spcev bc|deb=adc=aed<e×OrxxOr
15 9 14 syl a:1-1 ontoxxOr
16 rpnnen 𝒫
17 cpnnen 𝒫
18 16 17 entr4i
19 bren aa:1-1 onto
20 18 19 mpbi aa:1-1 onto
21 15 20 exlimiiv xxOr