Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnsrexpcl.s | |
|
cnsrexpcl.x | |
||
cnsrexpcl.y | |
||
Assertion | cnsrexpcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsrexpcl.s | |
|
2 | cnsrexpcl.x | |
|
3 | cnsrexpcl.y | |
|
4 | oveq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | eleq1d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | eleq1d | |
15 | 14 | imbi2d | |
16 | cnfldbas | |
|
17 | 16 | subrgss | |
18 | 1 17 | syl | |
19 | 18 2 | sseldd | |
20 | 19 | exp0d | |
21 | cnfld1 | |
|
22 | 21 | subrg1cl | |
23 | 1 22 | syl | |
24 | 20 23 | eqeltrd | |
25 | 19 | 3ad2ant2 | |
26 | simp1 | |
|
27 | 25 26 | expp1d | |
28 | 1 | 3ad2ant2 | |
29 | simp3 | |
|
30 | 2 | 3ad2ant2 | |
31 | cnfldmul | |
|
32 | 31 | subrgmcl | |
33 | 28 29 30 32 | syl3anc | |
34 | 27 33 | eqeltrd | |
35 | 34 | 3exp | |
36 | 35 | a2d | |
37 | 6 9 12 15 24 36 | nn0ind | |
38 | 3 37 | mpcom | |