Metamath Proof Explorer


Theorem cnsrexpcl

Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses cnsrexpcl.s φSSubRingfld
cnsrexpcl.x φXS
cnsrexpcl.y φY0
Assertion cnsrexpcl φXYS

Proof

Step Hyp Ref Expression
1 cnsrexpcl.s φSSubRingfld
2 cnsrexpcl.x φXS
3 cnsrexpcl.y φY0
4 oveq2 a=0Xa=X0
5 4 eleq1d a=0XaSX0S
6 5 imbi2d a=0φXaSφX0S
7 oveq2 a=bXa=Xb
8 7 eleq1d a=bXaSXbS
9 8 imbi2d a=bφXaSφXbS
10 oveq2 a=b+1Xa=Xb+1
11 10 eleq1d a=b+1XaSXb+1S
12 11 imbi2d a=b+1φXaSφXb+1S
13 oveq2 a=YXa=XY
14 13 eleq1d a=YXaSXYS
15 14 imbi2d a=YφXaSφXYS
16 cnfldbas =Basefld
17 16 subrgss SSubRingfldS
18 1 17 syl φS
19 18 2 sseldd φX
20 19 exp0d φX0=1
21 cnfld1 1=1fld
22 21 subrg1cl SSubRingfld1S
23 1 22 syl φ1S
24 20 23 eqeltrd φX0S
25 19 3ad2ant2 b0φXbSX
26 simp1 b0φXbSb0
27 25 26 expp1d b0φXbSXb+1=XbX
28 1 3ad2ant2 b0φXbSSSubRingfld
29 simp3 b0φXbSXbS
30 2 3ad2ant2 b0φXbSXS
31 cnfldmul ×=fld
32 31 subrgmcl SSubRingfldXbSXSXbXS
33 28 29 30 32 syl3anc b0φXbSXbXS
34 27 33 eqeltrd b0φXbSXb+1S
35 34 3exp b0φXbSXb+1S
36 35 a2d b0φXbSφXb+1S
37 6 9 12 15 24 36 nn0ind Y0φXYS
38 3 37 mpcom φXYS