| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnsrplycl.s |  | 
						
							| 2 |  | cnsrplycl.p |  | 
						
							| 3 |  | cnsrplycl.x |  | 
						
							| 4 |  | cnsrplycl.c |  | 
						
							| 5 |  | cnfldbas |  | 
						
							| 6 | 5 | subrgss |  | 
						
							| 7 | 1 6 | syl |  | 
						
							| 8 |  | plyss |  | 
						
							| 9 | 4 7 8 | syl2anc |  | 
						
							| 10 | 9 2 | sseldd |  | 
						
							| 11 | 7 3 | sseldd |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | coeid2 |  | 
						
							| 15 | 10 11 14 | syl2anc |  | 
						
							| 16 |  | fzfid |  | 
						
							| 17 | 1 | adantr |  | 
						
							| 18 |  | subrgsubg |  | 
						
							| 19 |  | cnfld0 |  | 
						
							| 20 | 19 | subg0cl |  | 
						
							| 21 | 1 18 20 | 3syl |  | 
						
							| 22 | 12 | coef2 |  | 
						
							| 23 | 10 21 22 | syl2anc |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | elfznn0 |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 | 24 26 | ffvelcdmd |  | 
						
							| 28 | 3 | adantr |  | 
						
							| 29 | 17 28 26 | cnsrexpcl |  | 
						
							| 30 |  | cnfldmul |  | 
						
							| 31 | 30 | subrgmcl |  | 
						
							| 32 | 17 27 29 31 | syl3anc |  | 
						
							| 33 | 1 16 32 | fsumcnsrcl |  | 
						
							| 34 | 15 33 | eqeltrd |  |