Metamath Proof Explorer


Theorem cnstrcvs

Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
Assertion cnstrcvs WℂVec

Proof

Step Hyp Ref Expression
1 cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
2 1 cnlmod WLMod
3 cnfldex fldV
4 cnfldbas =Basefld
5 4 ressid fldVfld𝑠=fld
6 3 5 ax-mp fld𝑠=fld
7 6 eqcomi fld=fld𝑠
8 id xx
9 addcl xyx+y
10 negcl xx
11 ax-1cn 1
12 mulcl xyxy
13 8 9 10 11 12 cnsubrglem SubRingfld
14 qdass Basendx+ndx+Scalarndxfldndx×=Basendx+ndx+Scalarndxfldndx×
15 1 14 eqtri W=Basendx+ndx+Scalarndxfldndx×
16 15 lmodsca fldVfld=ScalarW
17 3 16 ax-mp fld=ScalarW
18 17 isclmi WLModfld=fld𝑠SubRingfldWCMod
19 2 7 13 18 mp3an WCMod
20 cndrng fldDivRing
21 17 islvec WLVecWLModfldDivRing
22 2 20 21 mpbir2an WLVec
23 19 22 elini WCModLVec
24 df-cvs ℂVec=CModLVec
25 23 24 eleqtrri WℂVec