Metamath Proof Explorer


Theorem cntrcrng

Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrcrng.z Z=R𝑠CntrmulGrpR
Assertion cntrcrng RRingZCRing

Proof

Step Hyp Ref Expression
1 cntrcrng.z Z=R𝑠CntrmulGrpR
2 eqid mulGrpR=mulGrpR
3 eqid BaseR=BaseR
4 2 3 mgpbas BaseR=BasemulGrpR
5 eqid CntzmulGrpR=CntzmulGrpR
6 4 5 cntrval CntzmulGrpRBaseR=CntrmulGrpR
7 ssid BaseRBaseR
8 3 2 5 cntzsubr RRingBaseRBaseRCntzmulGrpRBaseRSubRingR
9 7 8 mpan2 RRingCntzmulGrpRBaseRSubRingR
10 6 9 eqeltrrid RRingCntrmulGrpRSubRingR
11 1 subrgring CntrmulGrpRSubRingRZRing
12 10 11 syl RRingZRing
13 fvex CntrmulGrpRV
14 1 2 mgpress RRingCntrmulGrpRVmulGrpR𝑠CntrmulGrpR=mulGrpZ
15 13 14 mpan2 RRingmulGrpR𝑠CntrmulGrpR=mulGrpZ
16 2 ringmgp RRingmulGrpRMnd
17 eqid mulGrpR𝑠CntrmulGrpR=mulGrpR𝑠CntrmulGrpR
18 17 cntrcmnd mulGrpRMndmulGrpR𝑠CntrmulGrpRCMnd
19 16 18 syl RRingmulGrpR𝑠CntrmulGrpRCMnd
20 15 19 eqeltrrd RRingmulGrpZCMnd
21 eqid mulGrpZ=mulGrpZ
22 21 iscrng ZCRingZRingmulGrpZCMnd
23 12 20 22 sylanbrc RRingZCRing