Metamath Proof Explorer


Theorem cnvmot

Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
motgrp.1 φGV
motco.2 φFGIsmtG
Assertion cnvmot φF-1GIsmtG

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 motgrp.1 φGV
4 motco.2 φFGIsmtG
5 1 2 3 4 motf1o φF:P1-1 ontoP
6 f1ocnv F:P1-1 ontoPF-1:P1-1 ontoP
7 5 6 syl φF-1:P1-1 ontoP
8 3 adantr φaPbPGV
9 f1of F-1:P1-1 ontoPF-1:PP
10 7 9 syl φF-1:PP
11 10 adantr φaPbPF-1:PP
12 simprl φaPbPaP
13 11 12 ffvelcdmd φaPbPF-1aP
14 simprr φaPbPbP
15 11 14 ffvelcdmd φaPbPF-1bP
16 4 adantr φaPbPFGIsmtG
17 1 2 8 13 15 16 motcgr φaPbPFF-1a-˙FF-1b=F-1a-˙F-1b
18 f1ocnvfv2 F:P1-1 ontoPaPFF-1a=a
19 5 12 18 syl2an2r φaPbPFF-1a=a
20 f1ocnvfv2 F:P1-1 ontoPbPFF-1b=b
21 5 14 20 syl2an2r φaPbPFF-1b=b
22 19 21 oveq12d φaPbPFF-1a-˙FF-1b=a-˙b
23 17 22 eqtr3d φaPbPF-1a-˙F-1b=a-˙b
24 23 ralrimivva φaPbPF-1a-˙F-1b=a-˙b
25 1 2 ismot GVF-1GIsmtGF-1:P1-1 ontoPaPbPF-1a-˙F-1b=a-˙b
26 3 25 syl φF-1GIsmtGF-1:P1-1 ontoPaPbPF-1a-˙F-1b=a-˙b
27 7 24 26 mpbir2and φF-1GIsmtG