Metamath Proof Explorer


Theorem coe1mon

Description: Coefficient vector of a monomial. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1moneq.p P=Poly1R
ply1moneq.x X=var1R
ply1moneq.e ×˙=mulGrpP
coe1mon.r φRRing
coe1mon.n φN0
coe1mon.0 0˙=0R
coe1mon.1 1˙=1R
Assertion coe1mon φcoe1N×˙X=k0ifk=N1˙0˙

Proof

Step Hyp Ref Expression
1 ply1moneq.p P=Poly1R
2 ply1moneq.x X=var1R
3 ply1moneq.e ×˙=mulGrpP
4 coe1mon.r φRRing
5 coe1mon.n φN0
6 coe1mon.0 0˙=0R
7 coe1mon.1 1˙=1R
8 1 ply1sca RRingR=ScalarP
9 4 8 syl φR=ScalarP
10 9 fveq2d φ1R=1ScalarP
11 7 10 eqtrid φ1˙=1ScalarP
12 11 oveq1d φ1˙PN×˙X=1ScalarPPN×˙X
13 1 ply1lmod RRingPLMod
14 4 13 syl φPLMod
15 eqid mulGrpP=mulGrpP
16 eqid BaseP=BaseP
17 1 2 15 3 16 ply1moncl RRingN0N×˙XBaseP
18 4 5 17 syl2anc φN×˙XBaseP
19 eqid ScalarP=ScalarP
20 eqid P=P
21 eqid 1ScalarP=1ScalarP
22 16 19 20 21 lmodvs1 PLModN×˙XBaseP1ScalarPPN×˙X=N×˙X
23 14 18 22 syl2anc φ1ScalarPPN×˙X=N×˙X
24 12 23 eqtrd φ1˙PN×˙X=N×˙X
25 24 fveq2d φcoe11˙PN×˙X=coe1N×˙X
26 eqid BaseR=BaseR
27 26 7 ringidcl RRing1˙BaseR
28 4 27 syl φ1˙BaseR
29 6 26 1 2 20 15 3 coe1tm RRing1˙BaseRN0coe11˙PN×˙X=k0ifk=N1˙0˙
30 4 28 5 29 syl3anc φcoe11˙PN×˙X=k0ifk=N1˙0˙
31 25 30 eqtr3d φcoe1N×˙X=k0ifk=N1˙0˙