Metamath Proof Explorer


Theorem coe1mul2lem1

Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Assertion coe1mul2lem1 A0X01𝑜Xf1𝑜×AX0A

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 1 a1i A0X01𝑜1𝑜On
3 fvexd A0X01𝑜a1𝑜XV
4 simpll A0X01𝑜a1𝑜A0
5 df1o2 1𝑜=
6 nn0ex 0V
7 0ex V
8 5 6 7 mapsnconst X01𝑜X=1𝑜×X
9 8 adantl A0X01𝑜X=1𝑜×X
10 fconstmpt 1𝑜×X=a1𝑜X
11 9 10 eqtrdi A0X01𝑜X=a1𝑜X
12 fconstmpt 1𝑜×A=a1𝑜A
13 12 a1i A0X01𝑜1𝑜×A=a1𝑜A
14 2 3 4 11 13 ofrfval2 A0X01𝑜Xf1𝑜×Aa1𝑜XA
15 1n0 1𝑜
16 r19.3rzv 1𝑜XAa1𝑜XA
17 15 16 mp1i A0X01𝑜XAa1𝑜XA
18 elmapi X01𝑜X:1𝑜0
19 0lt1o 1𝑜
20 ffvelcdm X:1𝑜01𝑜X0
21 18 19 20 sylancl X01𝑜X0
22 21 adantl A0X01𝑜X0
23 22 biantrurd A0X01𝑜XAX0XA
24 fznn0 A0X0AX0XA
25 24 adantr A0X01𝑜X0AX0XA
26 23 25 bitr4d A0X01𝑜XAX0A
27 14 17 26 3bitr2d A0X01𝑜Xf1𝑜×AX0A