Metamath Proof Explorer


Theorem coe1pwmulfv

Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z 0˙=0R
coe1pwmul.p P=Poly1R
coe1pwmul.x X=var1R
coe1pwmul.n N=mulGrpP
coe1pwmul.e ×˙=N
coe1pwmul.b B=BaseP
coe1pwmul.t ·˙=P
coe1pwmul.r φRRing
coe1pwmul.a φAB
coe1pwmul.d φD0
coe1pwmulfv.y φY0
Assertion coe1pwmulfv φcoe1D×˙X·˙AD+Y=coe1AY

Proof

Step Hyp Ref Expression
1 coe1pwmul.z 0˙=0R
2 coe1pwmul.p P=Poly1R
3 coe1pwmul.x X=var1R
4 coe1pwmul.n N=mulGrpP
5 coe1pwmul.e ×˙=N
6 coe1pwmul.b B=BaseP
7 coe1pwmul.t ·˙=P
8 coe1pwmul.r φRRing
9 coe1pwmul.a φAB
10 coe1pwmul.d φD0
11 coe1pwmulfv.y φY0
12 1 2 3 4 5 6 7 8 9 10 coe1pwmul φcoe1D×˙X·˙A=x0ifDxcoe1AxD0˙
13 12 fveq1d φcoe1D×˙X·˙AD+Y=x0ifDxcoe1AxD0˙D+Y
14 10 11 nn0addcld φD+Y0
15 breq2 x=D+YDxDD+Y
16 fvoveq1 x=D+Ycoe1AxD=coe1AD+Y-D
17 15 16 ifbieq1d x=D+YifDxcoe1AxD0˙=ifDD+Ycoe1AD+Y-D0˙
18 eqid x0ifDxcoe1AxD0˙=x0ifDxcoe1AxD0˙
19 fvex coe1AD+Y-DV
20 1 fvexi 0˙V
21 19 20 ifex ifDD+Ycoe1AD+Y-D0˙V
22 17 18 21 fvmpt D+Y0x0ifDxcoe1AxD0˙D+Y=ifDD+Ycoe1AD+Y-D0˙
23 14 22 syl φx0ifDxcoe1AxD0˙D+Y=ifDD+Ycoe1AD+Y-D0˙
24 10 nn0red φD
25 nn0addge1 DY0DD+Y
26 24 11 25 syl2anc φDD+Y
27 26 iftrued φifDD+Ycoe1AD+Y-D0˙=coe1AD+Y-D
28 10 nn0cnd φD
29 11 nn0cnd φY
30 28 29 pncan2d φD+Y-D=Y
31 30 fveq2d φcoe1AD+Y-D=coe1AY
32 23 27 31 3eqtrd φx0ifDxcoe1AxD0˙D+Y=coe1AY
33 13 32 eqtrd φcoe1D×˙X·˙AD+Y=coe1AY