Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sclmul.p |
|
2 |
|
coe1sclmul.b |
|
3 |
|
coe1sclmul.k |
|
4 |
|
coe1sclmul.a |
|
5 |
|
coe1sclmul.t |
|
6 |
|
coe1sclmul.u |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
simp3 |
|
13 |
|
simp1 |
|
14 |
|
simp2 |
|
15 |
|
0nn0 |
|
16 |
15
|
a1i |
|
17 |
7 3 1 8 9 10 11 2 5 6 12 13 14 16
|
coe1tmmul2 |
|
18 |
3 1 8 9 10 11 4
|
ply1scltm |
|
19 |
18
|
3adant3 |
|
20 |
19
|
oveq2d |
|
21 |
20
|
fveq2d |
|
22 |
|
nn0ex |
|
23 |
22
|
a1i |
|
24 |
|
fvexd |
|
25 |
|
simpl2 |
|
26 |
|
eqid |
|
27 |
26 2 1 3
|
coe1f |
|
28 |
27
|
feqmptd |
|
29 |
28
|
3ad2ant3 |
|
30 |
|
fconstmpt |
|
31 |
30
|
a1i |
|
32 |
23 24 25 29 31
|
offval2 |
|
33 |
|
nn0ge0 |
|
34 |
33
|
iftrued |
|
35 |
|
nn0cn |
|
36 |
35
|
subid1d |
|
37 |
36
|
fveq2d |
|
38 |
37
|
oveq1d |
|
39 |
34 38
|
eqtrd |
|
40 |
39
|
mpteq2ia |
|
41 |
32 40
|
eqtr4di |
|
42 |
17 21 41
|
3eqtr4d |
|