Metamath Proof Explorer


Theorem coelem

Description: Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion coelem FPolyScoeffF0n0coeffFn+1=0F=zk=0ncoeffFkzk

Proof

Step Hyp Ref Expression
1 coeval FPolyScoeffF=ιa0|n0an+1=0F=zk=0nakzk
2 coeeu FPolyS∃!a0n0an+1=0F=zk=0nakzk
3 riotacl2 ∃!a0n0an+1=0F=zk=0nakzkιa0|n0an+1=0F=zk=0nakzka0|n0an+1=0F=zk=0nakzk
4 2 3 syl FPolySιa0|n0an+1=0F=zk=0nakzka0|n0an+1=0F=zk=0nakzk
5 1 4 eqeltrd FPolyScoeffFa0|n0an+1=0F=zk=0nakzk
6 imaeq1 a=coeffFan+1=coeffFn+1
7 6 eqeq1d a=coeffFan+1=0coeffFn+1=0
8 fveq1 a=coeffFak=coeffFk
9 8 oveq1d a=coeffFakzk=coeffFkzk
10 9 sumeq2sdv a=coeffFk=0nakzk=k=0ncoeffFkzk
11 10 mpteq2dv a=coeffFzk=0nakzk=zk=0ncoeffFkzk
12 11 eqeq2d a=coeffFF=zk=0nakzkF=zk=0ncoeffFkzk
13 7 12 anbi12d a=coeffFan+1=0F=zk=0nakzkcoeffFn+1=0F=zk=0ncoeffFkzk
14 13 rexbidv a=coeffFn0an+1=0F=zk=0nakzkn0coeffFn+1=0F=zk=0ncoeffFkzk
15 14 elrab coeffFa0|n0an+1=0F=zk=0nakzkcoeffF0n0coeffFn+1=0F=zk=0ncoeffFkzk
16 5 15 sylib FPolyScoeffF0n0coeffFn+1=0F=zk=0ncoeffFkzk