| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyssc |
|
| 2 |
1
|
sseli |
|
| 3 |
|
elply2 |
|
| 4 |
3
|
simprbi |
|
| 5 |
|
rexcom |
|
| 6 |
4 5
|
sylib |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
0cn |
|
| 9 |
|
snssi |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
|
ssequn2 |
|
| 12 |
10 11
|
mpbi |
|
| 13 |
12
|
oveq1i |
|
| 14 |
13
|
rexeqi |
|
| 15 |
7 14
|
sylib |
|
| 16 |
|
reeanv |
|
| 17 |
|
simp1l |
|
| 18 |
|
simp1rl |
|
| 19 |
|
simp1rr |
|
| 20 |
|
simp2l |
|
| 21 |
|
simp2r |
|
| 22 |
|
simp3ll |
|
| 23 |
|
simp3rl |
|
| 24 |
|
simp3lr |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
sumeq2sdv |
|
| 28 |
|
fveq2 |
|
| 29 |
|
oveq2 |
|
| 30 |
28 29
|
oveq12d |
|
| 31 |
30
|
cbvsumv |
|
| 32 |
27 31
|
eqtrdi |
|
| 33 |
32
|
cbvmptv |
|
| 34 |
24 33
|
eqtrdi |
|
| 35 |
|
simp3rr |
|
| 36 |
25
|
oveq2d |
|
| 37 |
36
|
sumeq2sdv |
|
| 38 |
|
fveq2 |
|
| 39 |
38 29
|
oveq12d |
|
| 40 |
39
|
cbvsumv |
|
| 41 |
37 40
|
eqtrdi |
|
| 42 |
41
|
cbvmptv |
|
| 43 |
35 42
|
eqtrdi |
|
| 44 |
17 18 19 20 21 22 23 34 43
|
coeeulem |
|
| 45 |
44
|
3expia |
|
| 46 |
45
|
rexlimdvva |
|
| 47 |
16 46
|
biimtrrid |
|
| 48 |
47
|
ralrimivva |
|
| 49 |
|
imaeq1 |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
|
fveq1 |
|
| 52 |
51
|
oveq1d |
|
| 53 |
52
|
sumeq2sdv |
|
| 54 |
53
|
mpteq2dv |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
50 55
|
anbi12d |
|
| 57 |
56
|
rexbidv |
|
| 58 |
|
fvoveq1 |
|
| 59 |
58
|
imaeq2d |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
|
oveq2 |
|
| 62 |
61
|
sumeq1d |
|
| 63 |
62
|
mpteq2dv |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
60 64
|
anbi12d |
|
| 66 |
65
|
cbvrexvw |
|
| 67 |
57 66
|
bitrdi |
|
| 68 |
67
|
reu4 |
|
| 69 |
15 48 68
|
sylanbrc |
|