Metamath Proof Explorer


Theorem cofsslt

Description: If every element of A is bounded above by some element of B and B precedes C , then A precedes C . Note - we will often use the term "cofinal" to denote that every element of A is bounded above by some element of B . Similarly, we will use the term "coinitial" to denote that every element of A is bounded below by some element of B . (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Assertion cofsslt A𝒫NoxAyBxsyBsCAsC

Proof

Step Hyp Ref Expression
1 simp1 A𝒫NoxAyBxsyBsCA𝒫No
2 ssltex2 BsCCV
3 2 3ad2ant3 A𝒫NoxAyBxsyBsCCV
4 1 elpwid A𝒫NoxAyBxsyBsCANo
5 ssltss2 BsCCNo
6 5 3ad2ant3 A𝒫NoxAyBxsyBsCCNo
7 breq1 x=axsyasy
8 7 rexbidv x=ayBxsyyBasy
9 simp12 A𝒫NoxAyBxsyBsCaAcCxAyBxsy
10 simp2 A𝒫NoxAyBxsyBsCaAcCaA
11 8 9 10 rspcdva A𝒫NoxAyBxsyBsCaAcCyBasy
12 breq2 y=basyasb
13 12 cbvrexvw yBasybBasb
14 11 13 sylib A𝒫NoxAyBxsyBsCaAcCbBasb
15 simpl11 A𝒫NoxAyBxsyBsCaAcCbBasbA𝒫No
16 15 elpwid A𝒫NoxAyBxsyBsCaAcCbBasbANo
17 simpl2 A𝒫NoxAyBxsyBsCaAcCbBasbaA
18 16 17 sseldd A𝒫NoxAyBxsyBsCaAcCbBasbaNo
19 simpl13 A𝒫NoxAyBxsyBsCaAcCbBasbBsC
20 ssltss1 BsCBNo
21 19 20 syl A𝒫NoxAyBxsyBsCaAcCbBasbBNo
22 simprl A𝒫NoxAyBxsyBsCaAcCbBasbbB
23 21 22 sseldd A𝒫NoxAyBxsyBsCaAcCbBasbbNo
24 19 5 syl A𝒫NoxAyBxsyBsCaAcCbBasbCNo
25 simpl3 A𝒫NoxAyBxsyBsCaAcCbBasbcC
26 24 25 sseldd A𝒫NoxAyBxsyBsCaAcCbBasbcNo
27 simprr A𝒫NoxAyBxsyBsCaAcCbBasbasb
28 19 22 25 ssltsepcd A𝒫NoxAyBxsyBsCaAcCbBasbb<sc
29 18 23 26 27 28 slelttrd A𝒫NoxAyBxsyBsCaAcCbBasba<sc
30 14 29 rexlimddv A𝒫NoxAyBxsyBsCaAcCa<sc
31 1 3 4 6 30 ssltd A𝒫NoxAyBxsyBsCAsC