Description: If every element of A is bounded above by some element of B and B precedes C , then A precedes C . Note - we will often use the term "cofinal" to denote that every element of A is bounded above by some element of B . Similarly, we will use the term "coinitial" to denote that every element of A is bounded below by some element of B . (Contributed by Scott Fenton, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | cofsslt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | ssltex2 | |
|
3 | 2 | 3ad2ant3 | |
4 | 1 | elpwid | |
5 | ssltss2 | |
|
6 | 5 | 3ad2ant3 | |
7 | breq1 | |
|
8 | 7 | rexbidv | |
9 | simp12 | |
|
10 | simp2 | |
|
11 | 8 9 10 | rspcdva | |
12 | breq2 | |
|
13 | 12 | cbvrexvw | |
14 | 11 13 | sylib | |
15 | simpl11 | |
|
16 | 15 | elpwid | |
17 | simpl2 | |
|
18 | 16 17 | sseldd | |
19 | simpl13 | |
|
20 | ssltss1 | |
|
21 | 19 20 | syl | |
22 | simprl | |
|
23 | 21 22 | sseldd | |
24 | 19 5 | syl | |
25 | simpl3 | |
|
26 | 24 25 | sseldd | |
27 | simprr | |
|
28 | 19 22 25 | ssltsepcd | |
29 | 18 23 26 27 28 | slelttrd | |
30 | 14 29 | rexlimddv | |
31 | 1 3 4 6 30 | ssltd | |