Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | connsubclo.1 | |
|
connsubclo.3 | |
||
connsubclo.4 | |
||
connsubclo.5 | |
||
connsubclo.6 | |
||
connsubclo.7 | |
||
Assertion | connsubclo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connsubclo.1 | |
|
2 | connsubclo.3 | |
|
3 | connsubclo.4 | |
|
4 | connsubclo.5 | |
|
5 | connsubclo.6 | |
|
6 | connsubclo.7 | |
|
7 | eqid | |
|
8 | cldrcl | |
|
9 | 6 8 | syl | |
10 | 1 | topopn | |
11 | 9 10 | syl | |
12 | 11 2 | ssexd | |
13 | elrestr | |
|
14 | 9 12 4 13 | syl3anc | |
15 | eqid | |
|
16 | ineq1 | |
|
17 | 16 | rspceeqv | |
18 | 6 15 17 | sylancl | |
19 | 1 | restcld | |
20 | 9 2 19 | syl2anc | |
21 | 18 20 | mpbird | |
22 | 7 3 14 5 21 | connclo | |
23 | 1 | restuni | |
24 | 9 2 23 | syl2anc | |
25 | 22 24 | eqtr4d | |
26 | sseqin2 | |
|
27 | 25 26 | sylibr | |