Metamath Proof Explorer


Theorem connsubclo

Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses connsubclo.1 X=J
connsubclo.3 φAX
connsubclo.4 φJ𝑡AConn
connsubclo.5 φBJ
connsubclo.6 φBA
connsubclo.7 φBClsdJ
Assertion connsubclo φAB

Proof

Step Hyp Ref Expression
1 connsubclo.1 X=J
2 connsubclo.3 φAX
3 connsubclo.4 φJ𝑡AConn
4 connsubclo.5 φBJ
5 connsubclo.6 φBA
6 connsubclo.7 φBClsdJ
7 eqid J𝑡A=J𝑡A
8 cldrcl BClsdJJTop
9 6 8 syl φJTop
10 1 topopn JTopXJ
11 9 10 syl φXJ
12 11 2 ssexd φAV
13 elrestr JTopAVBJBAJ𝑡A
14 9 12 4 13 syl3anc φBAJ𝑡A
15 eqid BA=BA
16 ineq1 x=BxA=BA
17 16 rspceeqv BClsdJBA=BAxClsdJBA=xA
18 6 15 17 sylancl φxClsdJBA=xA
19 1 restcld JTopAXBAClsdJ𝑡AxClsdJBA=xA
20 9 2 19 syl2anc φBAClsdJ𝑡AxClsdJBA=xA
21 18 20 mpbird φBAClsdJ𝑡A
22 7 3 14 5 21 connclo φBA=J𝑡A
23 1 restuni JTopAXA=J𝑡A
24 9 2 23 syl2anc φA=J𝑡A
25 22 24 eqtr4d φBA=A
26 sseqin2 ABBA=A
27 25 26 sylibr φAB