Metamath Proof Explorer


Theorem cpmadugsum

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
cpmadugsum.g +˙=+Y
cpmadugsum.s -˙=-Y
cpmadugsum.i I=X·˙1˙-˙TM
cpmadugsum.j J=NmaAdjuP
cpmadugsum.0 0˙=0Y
cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
Assertion cpmadugsum NFinRCRingMBsbB0sI×˙JI=Yi0i×˙X·˙Gi

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 cpmadugsum.g +˙=+Y
12 cpmadugsum.s -˙=-Y
13 cpmadugsum.i I=X·˙1˙-˙TM
14 cpmadugsum.j J=NmaAdjuP
15 cpmadugsum.0 0˙=0Y
16 cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cpmadugsumfi NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
18 simpr NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0I×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
19 1 2 3 4 9 12 15 5 16 6 8 7 11 chfacfscmulgsum NFinRCRingMBsbB0sYi0i×˙X·˙Gi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
20 19 eqcomd NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0=Yi0i×˙X·˙Gi
21 20 adantr NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0=Yi0i×˙X·˙Gi
22 18 21 eqtrd NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0I×˙JI=Yi0i×˙X·˙Gi
23 22 ex NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0I×˙JI=Yi0i×˙X·˙Gi
24 23 reximdvva NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0sbB0sI×˙JI=Yi0i×˙X·˙Gi
25 17 24 mpd NFinRCRingMBsbB0sI×˙JI=Yi0i×˙X·˙Gi