Metamath Proof Explorer


Theorem cru

Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion cru A B C D A + i B = C + i D A = C B = D

Proof

Step Hyp Ref Expression
1 simplrl A B C D A + i B = C + i D C
2 1 recnd A B C D A + i B = C + i D C
3 simplll A B C D A + i B = C + i D A
4 3 recnd A B C D A + i B = C + i D A
5 simpr A B C D A + i B = C + i D A + i B = C + i D
6 ax-icn i
7 6 a1i A B C D A + i B = C + i D i
8 simpllr A B C D A + i B = C + i D B
9 8 recnd A B C D A + i B = C + i D B
10 7 9 mulcld A B C D A + i B = C + i D i B
11 simplrr A B C D A + i B = C + i D D
12 11 recnd A B C D A + i B = C + i D D
13 7 12 mulcld A B C D A + i B = C + i D i D
14 4 10 2 13 addsubeq4d A B C D A + i B = C + i D A + i B = C + i D C A = i B i D
15 5 14 mpbid A B C D A + i B = C + i D C A = i B i D
16 8 11 resubcld A B C D A + i B = C + i D B D
17 7 9 12 subdid A B C D A + i B = C + i D i B D = i B i D
18 17 15 eqtr4d A B C D A + i B = C + i D i B D = C A
19 1 3 resubcld A B C D A + i B = C + i D C A
20 18 19 eqeltrd A B C D A + i B = C + i D i B D
21 rimul B D i B D B D = 0
22 16 20 21 syl2anc A B C D A + i B = C + i D B D = 0
23 9 12 22 subeq0d A B C D A + i B = C + i D B = D
24 23 oveq2d A B C D A + i B = C + i D i B = i D
25 24 oveq1d A B C D A + i B = C + i D i B i D = i D i D
26 13 subidd A B C D A + i B = C + i D i D i D = 0
27 15 25 26 3eqtrd A B C D A + i B = C + i D C A = 0
28 2 4 27 subeq0d A B C D A + i B = C + i D C = A
29 28 eqcomd A B C D A + i B = C + i D A = C
30 29 23 jca A B C D A + i B = C + i D A = C B = D
31 30 ex A B C D A + i B = C + i D A = C B = D
32 oveq2 B = D i B = i D
33 oveq12 A = C i B = i D A + i B = C + i D
34 32 33 sylan2 A = C B = D A + i B = C + i D
35 31 34 impbid1 A B C D A + i B = C + i D A = C B = D