Metamath Proof Explorer


Theorem cru

Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion cru ABCDA+iB=C+iDA=CB=D

Proof

Step Hyp Ref Expression
1 simplrl ABCDA+iB=C+iDC
2 1 recnd ABCDA+iB=C+iDC
3 simplll ABCDA+iB=C+iDA
4 3 recnd ABCDA+iB=C+iDA
5 simpr ABCDA+iB=C+iDA+iB=C+iD
6 ax-icn i
7 6 a1i ABCDA+iB=C+iDi
8 simpllr ABCDA+iB=C+iDB
9 8 recnd ABCDA+iB=C+iDB
10 7 9 mulcld ABCDA+iB=C+iDiB
11 simplrr ABCDA+iB=C+iDD
12 11 recnd ABCDA+iB=C+iDD
13 7 12 mulcld ABCDA+iB=C+iDiD
14 4 10 2 13 addsubeq4d ABCDA+iB=C+iDA+iB=C+iDCA=iBiD
15 5 14 mpbid ABCDA+iB=C+iDCA=iBiD
16 8 11 resubcld ABCDA+iB=C+iDBD
17 7 9 12 subdid ABCDA+iB=C+iDiBD=iBiD
18 17 15 eqtr4d ABCDA+iB=C+iDiBD=CA
19 1 3 resubcld ABCDA+iB=C+iDCA
20 18 19 eqeltrd ABCDA+iB=C+iDiBD
21 rimul BDiBDBD=0
22 16 20 21 syl2anc ABCDA+iB=C+iDBD=0
23 9 12 22 subeq0d ABCDA+iB=C+iDB=D
24 23 oveq2d ABCDA+iB=C+iDiB=iD
25 24 oveq1d ABCDA+iB=C+iDiBiD=iDiD
26 13 subidd ABCDA+iB=C+iDiDiD=0
27 15 25 26 3eqtrd ABCDA+iB=C+iDCA=0
28 2 4 27 subeq0d ABCDA+iB=C+iDC=A
29 28 eqcomd ABCDA+iB=C+iDA=C
30 29 23 jca ABCDA+iB=C+iDA=CB=D
31 30 ex ABCDA+iB=C+iDA=CB=D
32 oveq2 B=DiB=iD
33 oveq12 A=CiB=iDA+iB=C+iD
34 32 33 sylan2 A=CB=DA+iB=C+iD
35 31 34 impbid1 ABCDA+iB=C+iDA=CB=D