| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplrl |
|
| 2 |
1
|
recnd |
|
| 3 |
|
simplll |
|
| 4 |
3
|
recnd |
|
| 5 |
|
simpr |
|
| 6 |
|
ax-icn |
|
| 7 |
6
|
a1i |
|
| 8 |
|
simpllr |
|
| 9 |
8
|
recnd |
|
| 10 |
7 9
|
mulcld |
|
| 11 |
|
simplrr |
|
| 12 |
11
|
recnd |
|
| 13 |
7 12
|
mulcld |
|
| 14 |
4 10 2 13
|
addsubeq4d |
|
| 15 |
5 14
|
mpbid |
|
| 16 |
8 11
|
resubcld |
|
| 17 |
7 9 12
|
subdid |
|
| 18 |
17 15
|
eqtr4d |
|
| 19 |
1 3
|
resubcld |
|
| 20 |
18 19
|
eqeltrd |
|
| 21 |
|
rimul |
|
| 22 |
16 20 21
|
syl2anc |
|
| 23 |
9 12 22
|
subeq0d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
13
|
subidd |
|
| 27 |
15 25 26
|
3eqtrd |
|
| 28 |
2 4 27
|
subeq0d |
|
| 29 |
28
|
eqcomd |
|
| 30 |
29 23
|
jca |
|
| 31 |
30
|
ex |
|
| 32 |
|
oveq2 |
|
| 33 |
|
oveq12 |
|
| 34 |
32 33
|
sylan2 |
|
| 35 |
31 34
|
impbid1 |
|