| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cu3addd.1 |
|
| 2 |
|
cu3addd.2 |
|
| 3 |
|
cu3addd.3 |
|
| 4 |
1 2
|
addcld |
|
| 5 |
4 3
|
jca |
|
| 6 |
|
binom3 |
|
| 7 |
6
|
a1i |
|
| 8 |
5 7
|
mpd |
|
| 9 |
|
binom3 |
|
| 10 |
1 2 9
|
syl2anc |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
oveq1d |
|
| 13 |
8 12
|
eqtrd |
|
| 14 |
1 2
|
binom2d |
|
| 15 |
14
|
oveq1d |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
oveq1d |
|
| 19 |
13 18
|
eqtrd |
|
| 20 |
1
|
sqcld |
|
| 21 |
|
2cnd |
|
| 22 |
1 2
|
mulcld |
|
| 23 |
21 22
|
mulcld |
|
| 24 |
20 23
|
addcld |
|
| 25 |
2
|
sqcld |
|
| 26 |
24 25 3
|
adddird |
|
| 27 |
26
|
oveq2d |
|
| 28 |
27
|
oveq2d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
19 29
|
eqtrd |
|
| 31 |
20 23 3
|
adddird |
|
| 32 |
31
|
oveq1d |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
oveq2d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
30 35
|
eqtrd |
|
| 37 |
|
3cn |
|
| 38 |
37
|
a1i |
|
| 39 |
20 3
|
mulcld |
|
| 40 |
23 3
|
mulcld |
|
| 41 |
39 40
|
addcld |
|
| 42 |
25 3
|
mulcld |
|
| 43 |
38 41 42
|
adddid |
|
| 44 |
43
|
oveq2d |
|
| 45 |
44
|
oveq1d |
|
| 46 |
36 45
|
eqtrd |
|
| 47 |
38 39 40
|
adddid |
|
| 48 |
47
|
oveq1d |
|
| 49 |
48
|
oveq2d |
|
| 50 |
49
|
oveq1d |
|
| 51 |
46 50
|
eqtrd |
|
| 52 |
38 21 22
|
mulassd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
38 23 3
|
mulassd |
|
| 55 |
53 54
|
eqtrd |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
oveq1d |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
eqcomd |
|
| 60 |
59
|
oveq1d |
|
| 61 |
51 60
|
eqtrd |
|
| 62 |
3
|
sqcld |
|
| 63 |
1 2 62
|
adddird |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
oveq1d |
|
| 66 |
65
|
oveq2d |
|
| 67 |
61 66
|
eqtrd |
|
| 68 |
1 62
|
mulcld |
|
| 69 |
2 62
|
mulcld |
|
| 70 |
38 68 69
|
adddid |
|
| 71 |
70
|
oveq1d |
|
| 72 |
71
|
oveq2d |
|
| 73 |
67 72
|
eqtrd |
|