Metamath Proof Explorer


Theorem cu3addd

Description: Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023)

Ref Expression
Hypotheses cu3addd.1 φA
cu3addd.2 φB
cu3addd.3 φC
Assertion cu3addd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+3BC2+C3

Proof

Step Hyp Ref Expression
1 cu3addd.1 φA
2 cu3addd.2 φB
3 cu3addd.3 φC
4 1 2 addcld φA+B
5 4 3 jca φA+BC
6 binom3 A+BCA+B+C3=A+B3+3A+B2C+3A+BC2+C3
7 6 a1i φA+BCA+B+C3=A+B3+3A+B2C+3A+BC2+C3
8 5 7 mpd φA+B+C3=A+B3+3A+B2C+3A+BC2+C3
9 binom3 ABA+B3=A3+3A2B+3AB2+B3
10 1 2 9 syl2anc φA+B3=A3+3A2B+3AB2+B3
11 10 oveq1d φA+B3+3A+B2C=A3+3A2B+3AB2+B3+3A+B2C
12 11 oveq1d φA+B3+3A+B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A+B2C+3A+BC2+C3
13 8 12 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A+B2C+3A+BC2+C3
14 1 2 binom2d φA+B2=A2+2AB+B2
15 14 oveq1d φA+B2C=A2+2AB+B2C
16 15 oveq2d φ3A+B2C=3A2+2AB+B2C
17 16 oveq2d φA3+3A2B+3AB2+B3+3A+B2C=A3+3A2B+3AB2+B3+3A2+2AB+B2C
18 17 oveq1d φA3+3A2B+3AB2+B3+3A+B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2+2AB+B2C+3A+BC2+C3
19 13 18 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2+2AB+B2C+3A+BC2+C3
20 1 sqcld φA2
21 2cnd φ2
22 1 2 mulcld φAB
23 21 22 mulcld φ2AB
24 20 23 addcld φA2+2AB
25 2 sqcld φB2
26 24 25 3 adddird φA2+2AB+B2C=A2+2ABC+B2C
27 26 oveq2d φ3A2+2AB+B2C=3A2+2ABC+B2C
28 27 oveq2d φA3+3A2B+3AB2+B3+3A2+2AB+B2C=A3+3A2B+3AB2+B3+3A2+2ABC+B2C
29 28 oveq1d φA3+3A2B+3AB2+B3+3A2+2AB+B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2+2ABC+B2C+3A+BC2+C3
30 19 29 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2+2ABC+B2C+3A+BC2+C3
31 20 23 3 adddird φA2+2ABC=A2C+2ABC
32 31 oveq1d φA2+2ABC+B2C=A2C+2ABC+B2C
33 32 oveq2d φ3A2+2ABC+B2C=3A2C+2ABC+B2C
34 33 oveq2d φA3+3A2B+3AB2+B3+3A2+2ABC+B2C=A3+3A2B+3AB2+B3+3A2C+2ABC+B2C
35 34 oveq1d φA3+3A2B+3AB2+B3+3A2+2ABC+B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2C+2ABC+B2C+3A+BC2+C3
36 30 35 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+2ABC+B2C+3A+BC2+C3
37 3cn 3
38 37 a1i φ3
39 20 3 mulcld φA2C
40 23 3 mulcld φ2ABC
41 39 40 addcld φA2C+2ABC
42 25 3 mulcld φB2C
43 38 41 42 adddid φ3A2C+2ABC+B2C=3A2C+2ABC+3B2C
44 43 oveq2d φA3+3A2B+3AB2+B3+3A2C+2ABC+B2C=A3+3A2B+3AB2+B3+3A2C+2ABC+3B2C
45 44 oveq1d φA3+3A2B+3AB2+B3+3A2C+2ABC+B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2C+2ABC+3B2C+3A+BC2+C3
46 36 45 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+2ABC+3B2C+3A+BC2+C3
47 38 39 40 adddid φ3A2C+2ABC=3A2C+32ABC
48 47 oveq1d φ3A2C+2ABC+3B2C=3A2C+32ABC+3B2C
49 48 oveq2d φA3+3A2B+3AB2+B3+3A2C+2ABC+3B2C=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C
50 49 oveq1d φA3+3A2B+3AB2+B3+3A2C+2ABC+3B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3
51 46 50 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3
52 38 21 22 mulassd φ32AB=32AB
53 52 oveq1d φ32ABC=32ABC
54 38 23 3 mulassd φ32ABC=32ABC
55 53 54 eqtrd φ32ABC=32ABC
56 55 oveq2d φ3A2C+32ABC=3A2C+32ABC
57 56 oveq1d φ3A2C+32ABC+3B2C=3A2C+32ABC+3B2C
58 57 oveq2d φA3+3A2B+3AB2+B3+3A2C+32ABC+3B2C=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C
59 58 eqcomd φA3+3A2B+3AB2+B3+3A2C+32ABC+3B2C=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C
60 59 oveq1d φA3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3
61 51 60 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3
62 3 sqcld φC2
63 1 2 62 adddird φA+BC2=AC2+BC2
64 63 oveq2d φ3A+BC2=3AC2+BC2
65 64 oveq1d φ3A+BC2+C3=3AC2+BC2+C3
66 65 oveq2d φA3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3A+BC2+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+BC2+C3
67 61 66 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+BC2+C3
68 1 62 mulcld φAC2
69 2 62 mulcld φBC2
70 38 68 69 adddid φ3AC2+BC2=3AC2+3BC2
71 70 oveq1d φ3AC2+BC2+C3=3AC2+3BC2+C3
72 71 oveq2d φA3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+BC2+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+3BC2+C3
73 67 72 eqtrd φA+B+C3=A3+3A2B+3AB2+B3+3A2C+32ABC+3B2C+3AC2+3BC2+C3