Step |
Hyp |
Ref |
Expression |
1 |
|
curfpropd.1 |
|
2 |
|
curfpropd.2 |
|
3 |
|
curfpropd.3 |
|
4 |
|
curfpropd.4 |
|
5 |
|
curfpropd.a |
|
6 |
|
curfpropd.b |
|
7 |
|
curfpropd.c |
|
8 |
|
curfpropd.d |
|
9 |
|
curfpropd.f |
|
10 |
1
|
homfeqbas |
|
11 |
3
|
homfeqbas |
|
12 |
11
|
adantr |
|
13 |
12
|
mpteq1d |
|
14 |
12
|
adantr |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
3
|
ad2antrr |
|
19 |
|
simprl |
|
20 |
|
simprr |
|
21 |
15 16 17 18 19 20
|
homfeqval |
|
22 |
1 2 5 6
|
cidpropd |
|
23 |
22
|
ad2antrr |
|
24 |
23
|
fveq1d |
|
25 |
24
|
oveq1d |
|
26 |
21 25
|
mpteq12dv |
|
27 |
12 14 26
|
mpoeq123dva |
|
28 |
13 27
|
opeq12d |
|
29 |
10 28
|
mpteq12dva |
|
30 |
10
|
adantr |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
1
|
adantr |
|
35 |
|
simprl |
|
36 |
|
simprr |
|
37 |
31 32 33 34 35 36
|
homfeqval |
|
38 |
11
|
ad2antrr |
|
39 |
3 4 7 8
|
cidpropd |
|
40 |
39
|
ad3antrrr |
|
41 |
40
|
fveq1d |
|
42 |
41
|
oveq2d |
|
43 |
38 42
|
mpteq12dva |
|
44 |
37 43
|
mpteq12dva |
|
45 |
10 30 44
|
mpoeq123dva |
|
46 |
29 45
|
opeq12d |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
47 31 5 7 9 15 16 48 32 49
|
curfval |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
1 2 3 4 5 6 7 8
|
xpcpropd |
|
54 |
53
|
oveq1d |
|
55 |
9 54
|
eleqtrd |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
51 52 6 8 55 56 17 57 33 58
|
curfval |
|
60 |
46 50 59
|
3eqtr4d |
|