Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cusgracyclt3v.1 | |
|
Assertion | cusgracyclt3v | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgracyclt3v.1 | |
|
2 | isacycgr | |
|
3 | 3nn0 | |
|
4 | 1 | fvexi | |
5 | hashxnn0 | |
|
6 | 4 5 | ax-mp | |
7 | xnn0lem1lt | |
|
8 | 3 6 7 | mp2an | |
9 | 3re | |
|
10 | 9 | rexri | |
11 | xnn0xr | |
|
12 | 6 11 | ax-mp | |
13 | xrlenlt | |
|
14 | 10 12 13 | mp2an | |
15 | 3m1e2 | |
|
16 | 15 | breq1i | |
17 | 8 14 16 | 3bitr3i | |
18 | 1 | cusgr3cyclex | |
19 | 3ne0 | |
|
20 | neeq1 | |
|
21 | 19 20 | mpbiri | |
22 | hasheq0 | |
|
23 | 22 | elv | |
24 | 23 | necon3bii | |
25 | 21 24 | sylib | |
26 | 25 | anim2i | |
27 | 26 | 2eximi | |
28 | 18 27 | syl | |
29 | 28 | ex | |
30 | 17 29 | biimtrid | |
31 | 30 | con1d | |
32 | 2 31 | sylbid | |
33 | cusgrusgr | |
|
34 | 1 | usgrcyclgt2v | |
35 | 34 | 3expib | |
36 | 33 35 | syl | |
37 | 36 17 | imbitrrdi | |
38 | 37 | exlimdvv | |
39 | 38 | con2d | |
40 | 39 2 | sylibrd | |
41 | 32 40 | impbid | |