Metamath Proof Explorer


Theorem cusgracyclt3v

Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023)

Ref Expression
Hypothesis cusgracyclt3v.1 V=VtxG
Assertion cusgracyclt3v GComplUSGraphGAcyclicGraphV<3

Proof

Step Hyp Ref Expression
1 cusgracyclt3v.1 V=VtxG
2 isacycgr GComplUSGraphGAcyclicGraph¬fpfCyclesGpf
3 3nn0 30
4 1 fvexi VV
5 hashxnn0 VVV0*
6 4 5 ax-mp V0*
7 xnn0lem1lt 30V0*3V31<V
8 3 6 7 mp2an 3V31<V
9 3re 3
10 9 rexri 3*
11 xnn0xr V0*V*
12 6 11 ax-mp V*
13 xrlenlt 3*V*3V¬V<3
14 10 12 13 mp2an 3V¬V<3
15 3m1e2 31=2
16 15 breq1i 31<V2<V
17 8 14 16 3bitr3i ¬V<32<V
18 1 cusgr3cyclex GComplUSGraph2<VfpfCyclesGpf=3
19 3ne0 30
20 neeq1 f=3f030
21 19 20 mpbiri f=3f0
22 hasheq0 fVf=0f=
23 22 elv f=0f=
24 23 necon3bii f0f
25 21 24 sylib f=3f
26 25 anim2i fCyclesGpf=3fCyclesGpf
27 26 2eximi fpfCyclesGpf=3fpfCyclesGpf
28 18 27 syl GComplUSGraph2<VfpfCyclesGpf
29 28 ex GComplUSGraph2<VfpfCyclesGpf
30 17 29 biimtrid GComplUSGraph¬V<3fpfCyclesGpf
31 30 con1d GComplUSGraph¬fpfCyclesGpfV<3
32 2 31 sylbid GComplUSGraphGAcyclicGraphV<3
33 cusgrusgr GComplUSGraphGUSGraph
34 1 usgrcyclgt2v GUSGraphfCyclesGpf2<V
35 34 3expib GUSGraphfCyclesGpf2<V
36 33 35 syl GComplUSGraphfCyclesGpf2<V
37 36 17 imbitrrdi GComplUSGraphfCyclesGpf¬V<3
38 37 exlimdvv GComplUSGraphfpfCyclesGpf¬V<3
39 38 con2d GComplUSGraphV<3¬fpfCyclesGpf
40 39 2 sylibrd GComplUSGraphV<3GAcyclicGraph
41 32 40 impbid GComplUSGraphGAcyclicGraphV<3