Metamath Proof Explorer


Theorem cvmlift2lem3

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2lem3.1 K = ι f II Cn C | F f = z 0 1 X G z f 0 = H X
Assertion cvmlift2lem3 φ X 0 1 K II Cn C F K = z 0 1 X G z K 0 = H X

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2lem3.1 K = ι f II Cn C | F f = z 0 1 X G z f 0 = H X
8 2 adantr φ X 0 1 F C CovMap J
9 iitopon II TopOn 0 1
10 9 a1i φ X 0 1 II TopOn 0 1
11 simpr φ X 0 1 X 0 1
12 10 10 11 cnmptc φ X 0 1 z 0 1 X II Cn II
13 10 cnmptid φ X 0 1 z 0 1 z II Cn II
14 3 adantr φ X 0 1 G II × t II Cn J
15 10 12 13 14 cnmpt12f φ X 0 1 z 0 1 X G z II Cn J
16 1 2 3 4 5 6 cvmlift2lem2 φ H II Cn C F H = z 0 1 z G 0 H 0 = P
17 16 simp1d φ H II Cn C
18 iiuni 0 1 = II
19 18 1 cnf H II Cn C H : 0 1 B
20 17 19 syl φ H : 0 1 B
21 20 ffvelrnda φ X 0 1 H X B
22 0elunit 0 0 1
23 oveq2 z = 0 X G z = X G 0
24 eqid z 0 1 X G z = z 0 1 X G z
25 ovex X G 0 V
26 23 24 25 fvmpt 0 0 1 z 0 1 X G z 0 = X G 0
27 22 26 mp1i φ X 0 1 z 0 1 X G z 0 = X G 0
28 16 simp2d φ F H = z 0 1 z G 0
29 28 fveq1d φ F H X = z 0 1 z G 0 X
30 oveq1 z = X z G 0 = X G 0
31 eqid z 0 1 z G 0 = z 0 1 z G 0
32 30 31 25 fvmpt X 0 1 z 0 1 z G 0 X = X G 0
33 29 32 sylan9eq φ X 0 1 F H X = X G 0
34 fvco3 H : 0 1 B X 0 1 F H X = F H X
35 20 34 sylan φ X 0 1 F H X = F H X
36 27 33 35 3eqtr2rd φ X 0 1 F H X = z 0 1 X G z 0
37 1 7 8 15 21 36 cvmliftiota φ X 0 1 K II Cn C F K = z 0 1 X G z K 0 = H X