Metamath Proof Explorer


Theorem cvmliftmo

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses cvmliftmo.b B=C
cvmliftmo.y Y=K
cvmliftmo.f φFCCovMapJ
cvmliftmo.k φKConn
cvmliftmo.l φKN-Locally Conn
cvmliftmo.o φOY
cvmliftmo.g φGKCnJ
cvmliftmo.p φPB
cvmliftmo.e φFP=GO
Assertion cvmliftmo φ*fKCnCFf=GfO=P

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B=C
2 cvmliftmo.y Y=K
3 cvmliftmo.f φFCCovMapJ
4 cvmliftmo.k φKConn
5 cvmliftmo.l φKN-Locally Conn
6 cvmliftmo.o φOY
7 cvmliftmo.g φGKCnJ
8 cvmliftmo.p φPB
9 cvmliftmo.e φFP=GO
10 3 ad2antrr φfKCnCgKCnCFf=GfO=PFg=GgO=PFCCovMapJ
11 4 ad2antrr φfKCnCgKCnCFf=GfO=PFg=GgO=PKConn
12 5 ad2antrr φfKCnCgKCnCFf=GfO=PFg=GgO=PKN-Locally Conn
13 6 ad2antrr φfKCnCgKCnCFf=GfO=PFg=GgO=POY
14 simplrl φfKCnCgKCnCFf=GfO=PFg=GgO=PfKCnC
15 simplrr φfKCnCgKCnCFf=GfO=PFg=GgO=PgKCnC
16 simprll φfKCnCgKCnCFf=GfO=PFg=GgO=PFf=G
17 simprrl φfKCnCgKCnCFf=GfO=PFg=GgO=PFg=G
18 16 17 eqtr4d φfKCnCgKCnCFf=GfO=PFg=GgO=PFf=Fg
19 simprlr φfKCnCgKCnCFf=GfO=PFg=GgO=PfO=P
20 simprrr φfKCnCgKCnCFf=GfO=PFg=GgO=PgO=P
21 19 20 eqtr4d φfKCnCgKCnCFf=GfO=PFg=GgO=PfO=gO
22 1 2 10 11 12 13 14 15 18 21 cvmliftmoi φfKCnCgKCnCFf=GfO=PFg=GgO=Pf=g
23 22 ex φfKCnCgKCnCFf=GfO=PFg=GgO=Pf=g
24 23 ralrimivva φfKCnCgKCnCFf=GfO=PFg=GgO=Pf=g
25 coeq2 f=gFf=Fg
26 25 eqeq1d f=gFf=GFg=G
27 fveq1 f=gfO=gO
28 27 eqeq1d f=gfO=PgO=P
29 26 28 anbi12d f=gFf=GfO=PFg=GgO=P
30 29 rmo4 *fKCnCFf=GfO=PfKCnCgKCnCFf=GfO=PFg=GgO=Pf=g
31 24 30 sylibr φ*fKCnCFf=GfO=P