Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by NM, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cvmliftmo.b | |
|
cvmliftmo.y | |
||
cvmliftmo.f | |
||
cvmliftmo.k | |
||
cvmliftmo.l | |
||
cvmliftmo.o | |
||
cvmliftmo.g | |
||
cvmliftmo.p | |
||
cvmliftmo.e | |
||
Assertion | cvmliftmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftmo.b | |
|
2 | cvmliftmo.y | |
|
3 | cvmliftmo.f | |
|
4 | cvmliftmo.k | |
|
5 | cvmliftmo.l | |
|
6 | cvmliftmo.o | |
|
7 | cvmliftmo.g | |
|
8 | cvmliftmo.p | |
|
9 | cvmliftmo.e | |
|
10 | 3 | ad2antrr | |
11 | 4 | ad2antrr | |
12 | 5 | ad2antrr | |
13 | 6 | ad2antrr | |
14 | simplrl | |
|
15 | simplrr | |
|
16 | simprll | |
|
17 | simprrl | |
|
18 | 16 17 | eqtr4d | |
19 | simprlr | |
|
20 | simprrr | |
|
21 | 19 20 | eqtr4d | |
22 | 1 2 10 11 12 13 14 15 18 21 | cvmliftmoi | |
23 | 22 | ex | |
24 | 23 | ralrimivva | |
25 | coeq2 | |
|
26 | 25 | eqeq1d | |
27 | fveq1 | |
|
28 | 27 | eqeq1d | |
29 | 26 28 | anbi12d | |
30 | 29 | rmo4 | |
31 | 24 30 | sylibr | |