Metamath Proof Explorer


Theorem cvmsdisj

Description: An even covering of U is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmsdisj TSUATBTA=BAB=

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 df-ne AB¬A=B
3 1 cvmsi TSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
4 3 simp3d TSUT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
5 4 simprd TSUuTvTuuv=FuC𝑡uHomeoJ𝑡U
6 simpl vTuuv=FuC𝑡uHomeoJ𝑡UvTuuv=
7 6 ralimi uTvTuuv=FuC𝑡uHomeoJ𝑡UuTvTuuv=
8 5 7 syl TSUuTvTuuv=
9 sneq u=Au=A
10 9 difeq2d u=ATu=TA
11 ineq1 u=Auv=Av
12 11 eqeq1d u=Auv=Av=
13 10 12 raleqbidv u=AvTuuv=vTAAv=
14 13 rspccva uTvTuuv=ATvTAAv=
15 8 14 sylan TSUATvTAAv=
16 necom ABBA
17 eldifsn BTABTBA
18 17 biimpri BTBABTA
19 16 18 sylan2b BTABBTA
20 ineq2 v=BAv=AB
21 20 eqeq1d v=BAv=AB=
22 21 rspccv vTAAv=BTAAB=
23 15 19 22 syl2im TSUATBTABAB=
24 23 expd TSUATBTABAB=
25 24 3impia TSUATBTABAB=
26 2 25 biimtrrid TSUATBT¬A=BAB=
27 26 orrd TSUATBTA=BAB=