Metamath Proof Explorer


Theorem cvmsi

Description: One direction of cvmsval . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmsi TSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 1 cvmsrcl TSUUJ
3 imaeq2 k=UF-1k=F-1U
4 3 eqeq2d k=Us=F-1ks=F-1U
5 oveq2 k=UJ𝑡k=J𝑡U
6 5 oveq2d k=UC𝑡uHomeoJ𝑡k=C𝑡uHomeoJ𝑡U
7 6 eleq2d k=UFuC𝑡uHomeoJ𝑡kFuC𝑡uHomeoJ𝑡U
8 7 anbi2d k=Uvsuuv=FuC𝑡uHomeoJ𝑡kvsuuv=FuC𝑡uHomeoJ𝑡U
9 8 ralbidv k=Uusvsuuv=FuC𝑡uHomeoJ𝑡kusvsuuv=FuC𝑡uHomeoJ𝑡U
10 4 9 anbi12d k=Us=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡ks=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
11 10 rabbidv k=Us𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=s𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
12 11 1 fvmptss2 SUs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
13 12 sseli TSUTs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
14 unieq s=Ts=T
15 14 eqeq1d s=Ts=F-1UT=F-1U
16 difeq1 s=Tsu=Tu
17 16 raleqdv s=Tvsuuv=vTuuv=
18 17 anbi1d s=Tvsuuv=FuC𝑡uHomeoJ𝑡UvTuuv=FuC𝑡uHomeoJ𝑡U
19 18 raleqbi1dv s=Tusvsuuv=FuC𝑡uHomeoJ𝑡UuTvTuuv=FuC𝑡uHomeoJ𝑡U
20 15 19 anbi12d s=Ts=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
21 20 elrab Ts𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UT𝒫CT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
22 13 21 sylib TSUT𝒫CT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
23 22 simpld TSUT𝒫C
24 eldifsn T𝒫CT𝒫CT
25 23 24 sylib TSUT𝒫CT
26 elpwi T𝒫CTC
27 26 anim1i T𝒫CTTCT
28 25 27 syl TSUTCT
29 22 simprd TSUT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
30 2 28 29 3jca TSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U