Metamath Proof Explorer


Theorem cvrval

Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. ( cvbr analog.) (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses cvrfval.b B=BaseK
cvrfval.s <˙=<K
cvrfval.c C=K
Assertion cvrval KAXBYBXCYX<˙Y¬zBX<˙zz<˙Y

Proof

Step Hyp Ref Expression
1 cvrfval.b B=BaseK
2 cvrfval.s <˙=<K
3 cvrfval.c C=K
4 1 2 3 cvrfval KAC=xy|xByBx<˙y¬zBx<˙zz<˙y
5 3anass xByBx<˙y¬zBx<˙zz<˙yxByBx<˙y¬zBx<˙zz<˙y
6 5 opabbii xy|xByBx<˙y¬zBx<˙zz<˙y=xy|xByBx<˙y¬zBx<˙zz<˙y
7 4 6 eqtrdi KAC=xy|xByBx<˙y¬zBx<˙zz<˙y
8 7 breqd KAXCYXxy|xByBx<˙y¬zBx<˙zz<˙yY
9 8 3ad2ant1 KAXBYBXCYXxy|xByBx<˙y¬zBx<˙zz<˙yY
10 df-br Xxy|xByBx<˙y¬zBx<˙zz<˙yYXYxy|xByBx<˙y¬zBx<˙zz<˙y
11 breq1 x=Xx<˙yX<˙y
12 breq1 x=Xx<˙zX<˙z
13 12 anbi1d x=Xx<˙zz<˙yX<˙zz<˙y
14 13 rexbidv x=XzBx<˙zz<˙yzBX<˙zz<˙y
15 14 notbid x=X¬zBx<˙zz<˙y¬zBX<˙zz<˙y
16 11 15 anbi12d x=Xx<˙y¬zBx<˙zz<˙yX<˙y¬zBX<˙zz<˙y
17 breq2 y=YX<˙yX<˙Y
18 breq2 y=Yz<˙yz<˙Y
19 18 anbi2d y=YX<˙zz<˙yX<˙zz<˙Y
20 19 rexbidv y=YzBX<˙zz<˙yzBX<˙zz<˙Y
21 20 notbid y=Y¬zBX<˙zz<˙y¬zBX<˙zz<˙Y
22 17 21 anbi12d y=YX<˙y¬zBX<˙zz<˙yX<˙Y¬zBX<˙zz<˙Y
23 16 22 opelopab2 XBYBXYxy|xByBx<˙y¬zBx<˙zz<˙yX<˙Y¬zBX<˙zz<˙Y
24 10 23 bitrid XBYBXxy|xByBx<˙y¬zBx<˙zz<˙yYX<˙Y¬zBX<˙zz<˙Y
25 24 3adant1 KAXBYBXxy|xByBx<˙y¬zBx<˙zz<˙yYX<˙Y¬zBX<˙zz<˙Y
26 9 25 bitrd KAXBYBXCYX<˙Y¬zBX<˙zz<˙Y