| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logbval |  | 
						
							| 2 | 1 | oveq2d |  | 
						
							| 3 |  | eldifi |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | eldif |  | 
						
							| 6 |  | c0ex |  | 
						
							| 7 | 6 | prid1 |  | 
						
							| 8 |  | eleq1 |  | 
						
							| 9 | 7 8 | mpbiri |  | 
						
							| 10 | 9 | necon3bi |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 5 11 | sylbi |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | eldif |  | 
						
							| 15 | 6 | snid |  | 
						
							| 16 |  | eleq1 |  | 
						
							| 17 | 15 16 | mpbiri |  | 
						
							| 18 | 17 | necon3bi |  | 
						
							| 19 | 18 | anim2i |  | 
						
							| 20 | 14 19 | sylbi |  | 
						
							| 21 |  | logcl |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 10 | anim2i |  | 
						
							| 25 | 5 24 | sylbi |  | 
						
							| 26 |  | logcl |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | eldifpr |  | 
						
							| 30 | 29 | biimpi |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | logccne0 |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 23 28 33 | divcld |  | 
						
							| 35 | 4 13 34 | cxpefd |  | 
						
							| 36 |  | eldifsn |  | 
						
							| 37 | 36 21 | sylbi |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 29 32 | sylbi |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 38 28 40 | divcan1d |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 |  | eflog |  | 
						
							| 44 | 36 43 | sylbi |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 42 45 | eqtrd |  | 
						
							| 47 | 2 35 46 | 3eqtrd |  |