Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycpmco2.c | |
|
cycpmco2.s | |
||
cycpmco2.d | |
||
cycpmco2.w | |
||
cycpmco2.i | |
||
cycpmco2.j | |
||
cycpmco2.e | |
||
cycpmco2.1 | |
||
Assertion | cycpmco2lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpmco2.c | |
|
2 | cycpmco2.s | |
|
3 | cycpmco2.d | |
|
4 | cycpmco2.w | |
|
5 | cycpmco2.i | |
|
6 | cycpmco2.j | |
|
7 | cycpmco2.e | |
|
8 | cycpmco2.1 | |
|
9 | 5 | eldifad | |
10 | ssrab2 | |
|
11 | eqid | |
|
12 | 1 2 11 | tocycf | |
13 | 3 12 | syl | |
14 | 13 | fdmd | |
15 | 4 14 | eleqtrd | |
16 | 10 15 | sselid | |
17 | id | |
|
18 | dmeq | |
|
19 | eqidd | |
|
20 | 17 18 19 | f1eq123d | |
21 | 20 | elrab3 | |
22 | 21 | biimpa | |
23 | 16 15 22 | syl2anc | |
24 | f1f | |
|
25 | 23 24 | syl | |
26 | 25 | frnd | |
27 | 26 6 | sseldd | |
28 | 5 | eldifbd | |
29 | nelne2 | |
|
30 | 6 28 29 | syl2anc | |
31 | 30 | necomd | |
32 | 1 3 9 27 31 2 | cyc2fv1 | |
33 | 32 | fveq2d | |