Metamath Proof Explorer


Theorem cycpmco2lem1

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2lem1 φMWM⟨“IJ”⟩I=MWJ

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 5 eldifad φID
10 ssrab2 wWordD|w:domw1-1DWordD
11 eqid BaseS=BaseS
12 1 2 11 tocycf DVM:wWordD|w:domw1-1DBaseS
13 3 12 syl φM:wWordD|w:domw1-1DBaseS
14 13 fdmd φdomM=wWordD|w:domw1-1D
15 4 14 eleqtrd φWwWordD|w:domw1-1D
16 10 15 sselid φWWordD
17 id w=Ww=W
18 dmeq w=Wdomw=domW
19 eqidd w=WD=D
20 17 18 19 f1eq123d w=Ww:domw1-1DW:domW1-1D
21 20 elrab3 WWordDWwWordD|w:domw1-1DW:domW1-1D
22 21 biimpa WWordDWwWordD|w:domw1-1DW:domW1-1D
23 16 15 22 syl2anc φW:domW1-1D
24 f1f W:domW1-1DW:domWD
25 23 24 syl φW:domWD
26 25 frnd φranWD
27 26 6 sseldd φJD
28 5 eldifbd φ¬IranW
29 nelne2 JranW¬IranWJI
30 6 28 29 syl2anc φJI
31 30 necomd φIJ
32 1 3 9 27 31 2 cyc2fv1 φM⟨“IJ”⟩I=J
33 32 fveq2d φMWM⟨“IJ”⟩I=MWJ