Metamath Proof Explorer


Theorem cycpmco2lem1

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M = toCyc D
cycpmco2.s S = SymGrp D
cycpmco2.d φ D V
cycpmco2.w φ W dom M
cycpmco2.i φ I D ran W
cycpmco2.j φ J ran W
cycpmco2.e E = W -1 J + 1
cycpmco2.1 U = W splice E E ⟨“ I ”⟩
Assertion cycpmco2lem1 φ M W M ⟨“ IJ ”⟩ I = M W J

Proof

Step Hyp Ref Expression
1 cycpmco2.c M = toCyc D
2 cycpmco2.s S = SymGrp D
3 cycpmco2.d φ D V
4 cycpmco2.w φ W dom M
5 cycpmco2.i φ I D ran W
6 cycpmco2.j φ J ran W
7 cycpmco2.e E = W -1 J + 1
8 cycpmco2.1 U = W splice E E ⟨“ I ”⟩
9 5 eldifad φ I D
10 ssrab2 w Word D | w : dom w 1-1 D Word D
11 eqid Base S = Base S
12 1 2 11 tocycf D V M : w Word D | w : dom w 1-1 D Base S
13 3 12 syl φ M : w Word D | w : dom w 1-1 D Base S
14 13 fdmd φ dom M = w Word D | w : dom w 1-1 D
15 4 14 eleqtrd φ W w Word D | w : dom w 1-1 D
16 10 15 sseldi φ W Word D
17 id w = W w = W
18 dmeq w = W dom w = dom W
19 eqidd w = W D = D
20 17 18 19 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
21 20 elrab3 W Word D W w Word D | w : dom w 1-1 D W : dom W 1-1 D
22 21 biimpa W Word D W w Word D | w : dom w 1-1 D W : dom W 1-1 D
23 16 15 22 syl2anc φ W : dom W 1-1 D
24 f1f W : dom W 1-1 D W : dom W D
25 23 24 syl φ W : dom W D
26 25 frnd φ ran W D
27 26 6 sseldd φ J D
28 5 eldifbd φ ¬ I ran W
29 nelne2 J ran W ¬ I ran W J I
30 6 28 29 syl2anc φ J I
31 30 necomd φ I J
32 1 3 9 27 31 2 cyc2fv1 φ M ⟨“ IJ ”⟩ I = J
33 32 fveq2d φ M W M ⟨“ IJ ”⟩ I = M W J