Metamath Proof Explorer


Theorem dalem-cly

Description: Lemma for dalem9 . Center of perspectivity C is not in plane Y (when Y and Z are different planes). (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem-cly.o O=LPlanesK
dalem-cly.y Y=P˙Q˙R
dalem-cly.z Z=S˙T˙U
Assertion dalem-cly φYZ¬C˙Y

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem-cly.o O=LPlanesK
6 dalem-cly.y Y=P˙Q˙R
7 dalem-cly.z Z=S˙T˙U
8 1 dalemkelat φKLat
9 1 4 dalemceb φCBaseK
10 1 5 dalemyeb φYBaseK
11 eqid BaseK=BaseK
12 11 2 3 latleeqj1 KLatCBaseKYBaseKC˙YC˙Y=Y
13 8 9 10 12 syl3anc φC˙YC˙Y=Y
14 1 dalemclpjs φC˙P˙S
15 1 dalemkehl φKHL
16 1 2 3 4 5 6 dalemcea φCA
17 1 dalemsea φSA
18 1 dalempea φPA
19 1 dalemqea φQA
20 1 dalem-clpjq φ¬C˙P˙Q
21 2 3 4 atnlej1 KHLCAPAQA¬C˙P˙QCP
22 15 16 18 19 20 21 syl131anc φCP
23 2 3 4 hlatexch1 KHLCASAPACPC˙P˙SS˙P˙C
24 15 16 17 18 22 23 syl131anc φC˙P˙SS˙P˙C
25 14 24 mpd φS˙P˙C
26 3 4 hlatjcom KHLCAPAC˙P=P˙C
27 15 16 18 26 syl3anc φC˙P=P˙C
28 25 27 breqtrrd φS˙C˙P
29 1 dalemclqjt φC˙Q˙T
30 1 dalemtea φTA
31 1 dalemrea φRA
32 simp312 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙Q˙R
33 1 32 sylbi φ¬C˙Q˙R
34 2 3 4 atnlej1 KHLCAQARA¬C˙Q˙RCQ
35 15 16 19 31 33 34 syl131anc φCQ
36 2 3 4 hlatexch1 KHLCATAQACQC˙Q˙TT˙Q˙C
37 15 16 30 19 35 36 syl131anc φC˙Q˙TT˙Q˙C
38 29 37 mpd φT˙Q˙C
39 3 4 hlatjcom KHLCAQAC˙Q=Q˙C
40 15 16 19 39 syl3anc φC˙Q=Q˙C
41 38 40 breqtrrd φT˙C˙Q
42 1 4 dalemseb φSBaseK
43 11 3 4 hlatjcl KHLCAPAC˙PBaseK
44 15 16 18 43 syl3anc φC˙PBaseK
45 1 4 dalemteb φTBaseK
46 11 3 4 hlatjcl KHLCAQAC˙QBaseK
47 15 16 19 46 syl3anc φC˙QBaseK
48 11 2 3 latjlej12 KLatSBaseKC˙PBaseKTBaseKC˙QBaseKS˙C˙PT˙C˙QS˙T˙C˙P˙C˙Q
49 8 42 44 45 47 48 syl122anc φS˙C˙PT˙C˙QS˙T˙C˙P˙C˙Q
50 28 41 49 mp2and φS˙T˙C˙P˙C˙Q
51 1 4 dalempeb φPBaseK
52 1 4 dalemqeb φQBaseK
53 11 3 latjjdi KLatCBaseKPBaseKQBaseKC˙P˙Q=C˙P˙C˙Q
54 8 9 51 52 53 syl13anc φC˙P˙Q=C˙P˙C˙Q
55 50 54 breqtrrd φS˙T˙C˙P˙Q
56 1 dalemclrju φC˙R˙U
57 1 dalemuea φUA
58 simp313 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙R˙P
59 1 58 sylbi φ¬C˙R˙P
60 2 3 4 atnlej1 KHLCARAPA¬C˙R˙PCR
61 15 16 31 18 59 60 syl131anc φCR
62 2 3 4 hlatexch1 KHLCAUARACRC˙R˙UU˙R˙C
63 15 16 57 31 61 62 syl131anc φC˙R˙UU˙R˙C
64 56 63 mpd φU˙R˙C
65 3 4 hlatjcom KHLCARAC˙R=R˙C
66 15 16 31 65 syl3anc φC˙R=R˙C
67 64 66 breqtrrd φU˙C˙R
68 1 3 4 dalemsjteb φS˙TBaseK
69 1 3 4 dalempjqeb φP˙QBaseK
70 11 3 latjcl KLatCBaseKP˙QBaseKC˙P˙QBaseK
71 8 9 69 70 syl3anc φC˙P˙QBaseK
72 1 4 dalemueb φUBaseK
73 11 3 4 hlatjcl KHLCARAC˙RBaseK
74 15 16 31 73 syl3anc φC˙RBaseK
75 11 2 3 latjlej12 KLatS˙TBaseKC˙P˙QBaseKUBaseKC˙RBaseKS˙T˙C˙P˙QU˙C˙RS˙T˙U˙C˙P˙Q˙C˙R
76 8 68 71 72 74 75 syl122anc φS˙T˙C˙P˙QU˙C˙RS˙T˙U˙C˙P˙Q˙C˙R
77 55 67 76 mp2and φS˙T˙U˙C˙P˙Q˙C˙R
78 1 4 dalemreb φRBaseK
79 11 3 latjjdi KLatCBaseKP˙QBaseKRBaseKC˙P˙Q˙R=C˙P˙Q˙C˙R
80 8 9 69 78 79 syl13anc φC˙P˙Q˙R=C˙P˙Q˙C˙R
81 77 80 breqtrrd φS˙T˙U˙C˙P˙Q˙R
82 6 oveq2i C˙Y=C˙P˙Q˙R
83 81 7 82 3brtr4g φZ˙C˙Y
84 breq2 C˙Y=YZ˙C˙YZ˙Y
85 83 84 syl5ibcom φC˙Y=YZ˙Y
86 13 85 sylbid φC˙YZ˙Y
87 1 dalemzeo φZO
88 1 dalemyeo φYO
89 2 5 lplncmp KHLZOYOZ˙YZ=Y
90 15 87 88 89 syl3anc φZ˙YZ=Y
91 eqcom Z=YY=Z
92 90 91 bitrdi φZ˙YY=Z
93 86 92 sylibd φC˙YY=Z
94 93 necon3ad φYZ¬C˙Y
95 94 imp φYZ¬C˙Y