Description: Lemma for dath . Show that auxiliary atom G is an atom. (Contributed by NM, 2-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalem.ph | |
|
dalem.l | |
||
dalem.j | |
||
dalem.a | |
||
dalem.ps | |
||
dalem23.m | |
||
dalem23.o | |
||
dalem23.y | |
||
dalem23.z | |
||
dalem23.g | |
||
Assertion | dalem23 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | |
|
2 | dalem.l | |
|
3 | dalem.j | |
|
4 | dalem.a | |
|
5 | dalem.ps | |
|
6 | dalem23.m | |
|
7 | dalem23.o | |
|
8 | dalem23.y | |
|
9 | dalem23.z | |
|
10 | dalem23.g | |
|
11 | 1 | dalemkehl | |
12 | 11 | adantr | |
13 | 5 | dalemccea | |
14 | 13 | adantl | |
15 | 1 | dalempea | |
16 | 15 | adantr | |
17 | 5 | dalemddea | |
18 | 17 | adantl | |
19 | 1 | dalemsea | |
20 | 19 | adantr | |
21 | 3 4 | hlatj4 | |
22 | 12 14 16 18 20 21 | syl122anc | |
23 | 22 | 3adant2 | |
24 | 1 2 3 4 5 7 8 9 | dalem22 | |
25 | 23 24 | eqeltrd | |
26 | 11 | 3ad2ant1 | |
27 | 1 2 3 4 7 8 | dalemply | |
28 | 5 | dalem-ccly | |
29 | nbrne2 | |
|
30 | 27 28 29 | syl2an | |
31 | 30 | necomd | |
32 | eqid | |
|
33 | 3 4 32 | llni2 | |
34 | 12 14 16 31 33 | syl31anc | |
35 | 34 | 3adant2 | |
36 | 17 | 3ad2ant3 | |
37 | 19 | 3ad2ant1 | |
38 | 1 2 3 4 9 | dalemsly | |
39 | 38 | 3adant3 | |
40 | 5 | dalem-ddly | |
41 | 40 | 3ad2ant3 | |
42 | nbrne2 | |
|
43 | 39 41 42 | syl2anc | |
44 | 43 | necomd | |
45 | 3 4 32 | llni2 | |
46 | 26 36 37 44 45 | syl31anc | |
47 | 3 6 4 32 7 | 2llnmj | |
48 | 26 35 46 47 | syl3anc | |
49 | 25 48 | mpbird | |
50 | 10 49 | eqeltrid | |