Metamath Proof Explorer


Theorem dalem23

Description: Lemma for dath . Show that auxiliary atom G is an atom. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem23.m ˙=meetK
dalem23.o O=LPlanesK
dalem23.y Y=P˙Q˙R
dalem23.z Z=S˙T˙U
dalem23.g G=c˙P˙d˙S
Assertion dalem23 φY=ZψGA

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem23.m ˙=meetK
7 dalem23.o O=LPlanesK
8 dalem23.y Y=P˙Q˙R
9 dalem23.z Z=S˙T˙U
10 dalem23.g G=c˙P˙d˙S
11 1 dalemkehl φKHL
12 11 adantr φψKHL
13 5 dalemccea ψcA
14 13 adantl φψcA
15 1 dalempea φPA
16 15 adantr φψPA
17 5 dalemddea ψdA
18 17 adantl φψdA
19 1 dalemsea φSA
20 19 adantr φψSA
21 3 4 hlatj4 KHLcAPAdASAc˙P˙d˙S=c˙d˙P˙S
22 12 14 16 18 20 21 syl122anc φψc˙P˙d˙S=c˙d˙P˙S
23 22 3adant2 φY=Zψc˙P˙d˙S=c˙d˙P˙S
24 1 2 3 4 5 7 8 9 dalem22 φY=Zψc˙d˙P˙SO
25 23 24 eqeltrd φY=Zψc˙P˙d˙SO
26 11 3ad2ant1 φY=ZψKHL
27 1 2 3 4 7 8 dalemply φP˙Y
28 5 dalem-ccly ψ¬c˙Y
29 nbrne2 P˙Y¬c˙YPc
30 27 28 29 syl2an φψPc
31 30 necomd φψcP
32 eqid LLinesK=LLinesK
33 3 4 32 llni2 KHLcAPAcPc˙PLLinesK
34 12 14 16 31 33 syl31anc φψc˙PLLinesK
35 34 3adant2 φY=Zψc˙PLLinesK
36 17 3ad2ant3 φY=ZψdA
37 19 3ad2ant1 φY=ZψSA
38 1 2 3 4 9 dalemsly φY=ZS˙Y
39 38 3adant3 φY=ZψS˙Y
40 5 dalem-ddly ψ¬d˙Y
41 40 3ad2ant3 φY=Zψ¬d˙Y
42 nbrne2 S˙Y¬d˙YSd
43 39 41 42 syl2anc φY=ZψSd
44 43 necomd φY=ZψdS
45 3 4 32 llni2 KHLdASAdSd˙SLLinesK
46 26 36 37 44 45 syl31anc φY=Zψd˙SLLinesK
47 3 6 4 32 7 2llnmj KHLc˙PLLinesKd˙SLLinesKc˙P˙d˙SAc˙P˙d˙SO
48 26 35 46 47 syl3anc φY=Zψc˙P˙d˙SAc˙P˙d˙SO
49 25 48 mpbird φY=Zψc˙P˙d˙SA
50 10 49 eqeltrid φY=ZψGA