Metamath Proof Explorer


Theorem dalem39

Description: Lemma for dath . Auxiliary atoms G , H , and I are not colinear. (Contributed by NM, 4-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem38.m ˙=meetK
dalem38.o O=LPlanesK
dalem38.y Y=P˙Q˙R
dalem38.z Z=S˙T˙U
dalem38.g G=c˙P˙d˙S
dalem38.h H=c˙Q˙d˙T
dalem38.i I=c˙R˙d˙U
Assertion dalem39 φY=Zψ¬H˙I˙G

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem38.m ˙=meetK
7 dalem38.o O=LPlanesK
8 dalem38.y Y=P˙Q˙R
9 dalem38.z Z=S˙T˙U
10 dalem38.g G=c˙P˙d˙S
11 dalem38.h H=c˙Q˙d˙T
12 dalem38.i I=c˙R˙d˙U
13 1 dalemkehl φKHL
14 13 3ad2ant1 φY=ZψKHL
15 1 dalemyeo φYO
16 15 3ad2ant1 φY=ZψYO
17 5 dalemccea ψcA
18 17 3ad2ant3 φY=ZψcA
19 5 dalem-ccly ψ¬c˙Y
20 19 3ad2ant3 φY=Zψ¬c˙Y
21 eqid LVolsK=LVolsK
22 2 3 4 7 21 lvoli3 KHLYOcA¬c˙YY˙cLVolsK
23 14 16 18 20 22 syl31anc φY=ZψY˙cLVolsK
24 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
25 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
26 2 3 4 21 lvolnle3at KHLY˙cLVolsKIAGAcA¬Y˙c˙I˙G˙c
27 14 23 24 25 18 26 syl23anc φY=Zψ¬Y˙c˙I˙G˙c
28 1 2 3 4 5 6 7 8 9 10 11 12 dalem38 φY=ZψY˙G˙H˙I˙c
29 1 dalemkelat φKLat
30 29 3ad2ant1 φY=ZψKLat
31 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
32 eqid BaseK=BaseK
33 32 3 4 hlatjcl KHLGAHAG˙HBaseK
34 14 25 31 33 syl3anc φY=ZψG˙HBaseK
35 32 4 atbase IAIBaseK
36 24 35 syl φY=ZψIBaseK
37 32 3 latjcl KLatG˙HBaseKIBaseKG˙H˙IBaseK
38 30 34 36 37 syl3anc φY=ZψG˙H˙IBaseK
39 5 4 dalemcceb ψcBaseK
40 39 3ad2ant3 φY=ZψcBaseK
41 32 2 3 latlej2 KLatG˙H˙IBaseKcBaseKc˙G˙H˙I˙c
42 30 38 40 41 syl3anc φY=Zψc˙G˙H˙I˙c
43 1 7 dalemyeb φYBaseK
44 43 3ad2ant1 φY=ZψYBaseK
45 32 3 latjcl KLatG˙H˙IBaseKcBaseKG˙H˙I˙cBaseK
46 30 38 40 45 syl3anc φY=ZψG˙H˙I˙cBaseK
47 32 2 3 latjle12 KLatYBaseKcBaseKG˙H˙I˙cBaseKY˙G˙H˙I˙cc˙G˙H˙I˙cY˙c˙G˙H˙I˙c
48 30 44 40 46 47 syl13anc φY=ZψY˙G˙H˙I˙cc˙G˙H˙I˙cY˙c˙G˙H˙I˙c
49 28 42 48 mpbi2and φY=ZψY˙c˙G˙H˙I˙c
50 3 4 hlatjrot KHLGAHAIAG˙H˙I=I˙G˙H
51 14 25 31 24 50 syl13anc φY=ZψG˙H˙I=I˙G˙H
52 51 oveq1d φY=ZψG˙H˙I˙c=I˙G˙H˙c
53 49 52 breqtrd φY=ZψY˙c˙I˙G˙H˙c
54 53 adantr φY=ZψH˙I˙GY˙c˙I˙G˙H˙c
55 32 4 atbase HAHBaseK
56 31 55 syl φY=ZψHBaseK
57 32 3 4 hlatjcl KHLIAGAI˙GBaseK
58 14 24 25 57 syl3anc φY=ZψI˙GBaseK
59 32 2 3 latleeqj2 KLatHBaseKI˙GBaseKH˙I˙GI˙G˙H=I˙G
60 30 56 58 59 syl3anc φY=ZψH˙I˙GI˙G˙H=I˙G
61 60 biimpa φY=ZψH˙I˙GI˙G˙H=I˙G
62 61 oveq1d φY=ZψH˙I˙GI˙G˙H˙c=I˙G˙c
63 54 62 breqtrd φY=ZψH˙I˙GY˙c˙I˙G˙c
64 27 63 mtand φY=Zψ¬H˙I˙G