Metamath Proof Explorer


Theorem dalem57

Description: Lemma for dath . Axis of perspectivity point D is on the auxiliary line B . (Contributed by NM, 9-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem57.m ˙=meetK
dalem57.o O=LPlanesK
dalem57.y Y=P˙Q˙R
dalem57.z Z=S˙T˙U
dalem57.d D=P˙Q˙S˙T
dalem57.g G=c˙P˙d˙S
dalem57.h H=c˙Q˙d˙T
dalem57.i I=c˙R˙d˙U
dalem57.b1 B=G˙H˙I˙Y
Assertion dalem57 φY=ZψD˙B

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem57.m ˙=meetK
7 dalem57.o O=LPlanesK
8 dalem57.y Y=P˙Q˙R
9 dalem57.z Z=S˙T˙U
10 dalem57.d D=P˙Q˙S˙T
11 dalem57.g G=c˙P˙d˙S
12 dalem57.h H=c˙Q˙d˙T
13 dalem57.i I=c˙R˙d˙U
14 dalem57.b1 B=G˙H˙I˙Y
15 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem55 φY=ZψG˙H˙P˙Q=G˙H˙B
16 1 dalemkelat φKLat
17 16 3ad2ant1 φY=ZψKLat
18 1 dalemkehl φKHL
19 18 3ad2ant1 φY=ZψKHL
20 1 2 3 4 5 6 7 8 9 11 dalem23 φY=ZψGA
21 1 2 3 4 5 6 7 8 9 12 dalem29 φY=ZψHA
22 eqid BaseK=BaseK
23 22 3 4 hlatjcl KHLGAHAG˙HBaseK
24 19 20 21 23 syl3anc φY=ZψG˙HBaseK
25 1 3 4 dalempjqeb φP˙QBaseK
26 25 3ad2ant1 φY=ZψP˙QBaseK
27 22 2 6 latmle2 KLatG˙HBaseKP˙QBaseKG˙H˙P˙Q˙P˙Q
28 17 24 26 27 syl3anc φY=ZψG˙H˙P˙Q˙P˙Q
29 15 28 eqbrtrrd φY=ZψG˙H˙B˙P˙Q
30 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem56 φY=ZψG˙H˙S˙T=G˙H˙B
31 1 3 4 dalemsjteb φS˙TBaseK
32 31 3ad2ant1 φY=ZψS˙TBaseK
33 22 2 6 latmle2 KLatG˙HBaseKS˙TBaseKG˙H˙S˙T˙S˙T
34 17 24 32 33 syl3anc φY=ZψG˙H˙S˙T˙S˙T
35 30 34 eqbrtrrd φY=ZψG˙H˙B˙S˙T
36 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem54 φY=ZψG˙H˙BA
37 22 4 atbase G˙H˙BAG˙H˙BBaseK
38 36 37 syl φY=ZψG˙H˙BBaseK
39 22 2 6 latlem12 KLatG˙H˙BBaseKP˙QBaseKS˙TBaseKG˙H˙B˙P˙QG˙H˙B˙S˙TG˙H˙B˙P˙Q˙S˙T
40 17 38 26 32 39 syl13anc φY=ZψG˙H˙B˙P˙QG˙H˙B˙S˙TG˙H˙B˙P˙Q˙S˙T
41 29 35 40 mpbi2and φY=ZψG˙H˙B˙P˙Q˙S˙T
42 41 10 breqtrrdi φY=ZψG˙H˙B˙D
43 hlatl KHLKAtLat
44 19 43 syl φY=ZψKAtLat
45 1 2 3 4 6 7 8 9 10 dalemdea φDA
46 45 3ad2ant1 φY=ZψDA
47 2 4 atcmp KAtLatG˙H˙BADAG˙H˙B˙DG˙H˙B=D
48 44 36 46 47 syl3anc φY=ZψG˙H˙B˙DG˙H˙B=D
49 42 48 mpbid φY=ZψG˙H˙B=D
50 eqid LLinesK=LLinesK
51 1 2 3 4 5 6 50 7 8 9 11 12 13 14 dalem53 φY=ZψBLLinesK
52 22 50 llnbase BLLinesKBBaseK
53 51 52 syl φY=ZψBBaseK
54 22 2 6 latmle2 KLatG˙HBaseKBBaseKG˙H˙B˙B
55 17 24 53 54 syl3anc φY=ZψG˙H˙B˙B
56 49 55 eqbrtrrd φY=ZψD˙B