Metamath Proof Explorer


Theorem dchr1

Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchr1.g G=DChrN
dchr1.z Z=/N
dchr1.o 1˙=0G
dchr1.u U=UnitZ
dchr1.n φN
dchr1.a φAU
Assertion dchr1 φ1˙A=1

Proof

Step Hyp Ref Expression
1 dchr1.g G=DChrN
2 dchr1.z Z=/N
3 dchr1.o 1˙=0G
4 dchr1.u U=UnitZ
5 dchr1.n φN
6 dchr1.a φAU
7 eqid BaseG=BaseG
8 eqid BaseZ=BaseZ
9 eqid kBaseZifkU10=kBaseZifkU10
10 1 2 7 8 4 9 5 dchr1cl φkBaseZifkU10BaseG
11 eleq1w k=xkUxU
12 11 ifbid k=xifkU10=ifxU10
13 12 cbvmptv kBaseZifkU10=xBaseZifxU10
14 eqid +G=+G
15 1 2 7 8 4 13 14 10 dchrmullid φkBaseZifkU10+GkBaseZifkU10=kBaseZifkU10
16 1 dchrabl NGAbel
17 ablgrp GAbelGGrp
18 7 14 3 isgrpid2 GGrpkBaseZifkU10BaseGkBaseZifkU10+GkBaseZifkU10=kBaseZifkU101˙=kBaseZifkU10
19 5 16 17 18 4syl φkBaseZifkU10BaseGkBaseZifkU10+GkBaseZifkU10=kBaseZifkU101˙=kBaseZifkU10
20 10 15 19 mpbi2and φ1˙=kBaseZifkU10
21 simpr φk=Ak=A
22 6 adantr φk=AAU
23 21 22 eqeltrd φk=AkU
24 23 iftrued φk=AifkU10=1
25 8 4 unitss UBaseZ
26 25 6 sselid φABaseZ
27 1cnd φ1
28 20 24 26 27 fvmptd φ1˙A=1