Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character X is 0 if X is non-principal and phi ( n ) otherwise. Part of Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchrsum.g | |
|
dchrsum.z | |
||
dchrsum.d | |
||
dchrsum.1 | |
||
dchrsum.x | |
||
dchrsum.b | |
||
Assertion | dchrsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrsum.g | |
|
2 | dchrsum.z | |
|
3 | dchrsum.d | |
|
4 | dchrsum.1 | |
|
5 | dchrsum.x | |
|
6 | dchrsum.b | |
|
7 | eqid | |
|
8 | 6 7 | unitss | |
9 | 8 | a1i | |
10 | 1 2 3 6 5 | dchrf | |
11 | 8 | sseli | |
12 | ffvelcdm | |
|
13 | 10 11 12 | syl2an | |
14 | eldif | |
|
15 | 5 | adantr | |
16 | simpr | |
|
17 | 1 2 3 6 7 15 16 | dchrn0 | |
18 | 17 | biimpd | |
19 | 18 | necon1bd | |
20 | 19 | impr | |
21 | 14 20 | sylan2b | |
22 | 1 3 | dchrrcl | |
23 | 2 6 | znfi | |
24 | 5 22 23 | 3syl | |
25 | 9 13 21 24 | fsumss | |
26 | 1 2 3 4 5 7 | dchrsum2 | |
27 | 25 26 | eqtr3d | |