Metamath Proof Explorer


Theorem dchrsum

Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character X is 0 if X is non-principal and phi ( n ) otherwise. Part of Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrsum.g G=DChrN
dchrsum.z Z=/N
dchrsum.d D=BaseG
dchrsum.1 1˙=0G
dchrsum.x φXD
dchrsum.b B=BaseZ
Assertion dchrsum φaBXa=ifX=1˙ϕN0

Proof

Step Hyp Ref Expression
1 dchrsum.g G=DChrN
2 dchrsum.z Z=/N
3 dchrsum.d D=BaseG
4 dchrsum.1 1˙=0G
5 dchrsum.x φXD
6 dchrsum.b B=BaseZ
7 eqid UnitZ=UnitZ
8 6 7 unitss UnitZB
9 8 a1i φUnitZB
10 1 2 3 6 5 dchrf φX:B
11 8 sseli aUnitZaB
12 ffvelcdm X:BaBXa
13 10 11 12 syl2an φaUnitZXa
14 eldif aBUnitZaB¬aUnitZ
15 5 adantr φaBXD
16 simpr φaBaB
17 1 2 3 6 7 15 16 dchrn0 φaBXa0aUnitZ
18 17 biimpd φaBXa0aUnitZ
19 18 necon1bd φaB¬aUnitZXa=0
20 19 impr φaB¬aUnitZXa=0
21 14 20 sylan2b φaBUnitZXa=0
22 1 3 dchrrcl XDN
23 2 6 znfi NBFin
24 5 22 23 3syl φBFin
25 9 13 21 24 fsumss φaUnitZXa=aBXa
26 1 2 3 4 5 7 dchrsum2 φaUnitZXa=ifX=1˙ϕN0
27 25 26 eqtr3d φaBXa=ifX=1˙ϕN0