Metamath Proof Explorer


Theorem dchrzrhmul

Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrelbas4.l L=ℤRHomZ
dchrzrh1.x φXD
dchrzrh1.a φA
dchrzrh1.c φC
Assertion dchrzrhmul φXLAC=XLAXLC

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrelbas4.l L=ℤRHomZ
5 dchrzrh1.x φXD
6 dchrzrh1.a φA
7 dchrzrh1.c φC
8 1 3 dchrrcl XDN
9 5 8 syl φN
10 9 nnnn0d φN0
11 2 zncrng N0ZCRing
12 10 11 syl φZCRing
13 crngring ZCRingZRing
14 12 13 syl φZRing
15 4 zrhrhm ZRingLringRingHomZ
16 14 15 syl φLringRingHomZ
17 zringbas =Basering
18 zringmulr ×=ring
19 eqid Z=Z
20 17 18 19 rhmmul LringRingHomZACLAC=LAZLC
21 16 6 7 20 syl3anc φLAC=LAZLC
22 21 fveq2d φXLAC=XLAZLC
23 1 2 3 dchrmhm DmulGrpZMndHommulGrpfld
24 23 5 sselid φXmulGrpZMndHommulGrpfld
25 eqid BaseZ=BaseZ
26 17 25 rhmf LringRingHomZL:BaseZ
27 16 26 syl φL:BaseZ
28 27 6 ffvelcdmd φLABaseZ
29 27 7 ffvelcdmd φLCBaseZ
30 eqid mulGrpZ=mulGrpZ
31 30 25 mgpbas BaseZ=BasemulGrpZ
32 30 19 mgpplusg Z=+mulGrpZ
33 eqid mulGrpfld=mulGrpfld
34 cnfldmul ×=fld
35 33 34 mgpplusg ×=+mulGrpfld
36 31 32 35 mhmlin XmulGrpZMndHommulGrpfldLABaseZLCBaseZXLAZLC=XLAXLC
37 24 28 29 36 syl3anc φXLAZLC=XLAXLC
38 22 37 eqtrd φXLAC=XLAXLC