Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we haveInf+AC impliesDC andDC impliesInf, but AC does not implyInf. (Contributed by Mario Carneiro, 25-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dcomex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 | |
|
2 | df-br | |
|
3 | elsni | |
|
4 | fvex | |
|
5 | fvex | |
|
6 | 4 5 | opth1 | |
7 | 3 6 | syl | |
8 | 2 7 | sylbi | |
9 | tz6.12i | |
|
10 | 1 8 9 | mpsyl | |
11 | vex | |
|
12 | 1oex | |
|
13 | 11 12 | breldm | |
14 | 10 13 | syl | |
15 | 14 | ralimi | |
16 | dfss3 | |
|
17 | 15 16 | sylibr | |
18 | vex | |
|
19 | 18 | dmex | |
20 | 19 | ssex | |
21 | 17 20 | syl | |
22 | snex | |
|
23 | 12 12 | fvsn | |
24 | 12 12 | funsn | |
25 | 12 | snid | |
26 | 12 | dmsnop | |
27 | 25 26 | eleqtrri | |
28 | funbrfvb | |
|
29 | 24 27 28 | mp2an | |
30 | 23 29 | mpbi | |
31 | breq12 | |
|
32 | 12 12 31 | spc2ev | |
33 | 30 32 | ax-mp | |
34 | breq | |
|
35 | 34 | 2exbidv | |
36 | 33 35 | mpbiri | |
37 | ssid | |
|
38 | 12 | rnsnop | |
39 | 37 38 26 | 3sstr4i | |
40 | rneq | |
|
41 | dmeq | |
|
42 | 40 41 | sseq12d | |
43 | 39 42 | mpbiri | |
44 | pm5.5 | |
|
45 | 36 43 44 | syl2anc | |
46 | breq | |
|
47 | 46 | ralbidv | |
48 | 47 | exbidv | |
49 | 45 48 | bitrd | |
50 | ax-dc | |
|
51 | 22 49 50 | vtocl | |
52 | 21 51 | exlimiiv | |