Metamath Proof Explorer


Theorem dcomex

Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we haveInf+AC impliesDC andDC impliesInf, but AC does not implyInf. (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Assertion dcomex ωV

Proof

Step Hyp Ref Expression
1 1n0 1𝑜
2 df-br fn1𝑜1𝑜fsucnfnfsucn1𝑜1𝑜
3 elsni fnfsucn1𝑜1𝑜fnfsucn=1𝑜1𝑜
4 fvex fnV
5 fvex fsucnV
6 4 5 opth1 fnfsucn=1𝑜1𝑜fn=1𝑜
7 3 6 syl fnfsucn1𝑜1𝑜fn=1𝑜
8 2 7 sylbi fn1𝑜1𝑜fsucnfn=1𝑜
9 tz6.12i 1𝑜fn=1𝑜nf1𝑜
10 1 8 9 mpsyl fn1𝑜1𝑜fsucnnf1𝑜
11 vex nV
12 1oex 1𝑜V
13 11 12 breldm nf1𝑜ndomf
14 10 13 syl fn1𝑜1𝑜fsucnndomf
15 14 ralimi nωfn1𝑜1𝑜fsucnnωndomf
16 dfss3 ωdomfnωndomf
17 15 16 sylibr nωfn1𝑜1𝑜fsucnωdomf
18 vex fV
19 18 dmex domfV
20 19 ssex ωdomfωV
21 17 20 syl nωfn1𝑜1𝑜fsucnωV
22 snex 1𝑜1𝑜V
23 12 12 fvsn 1𝑜1𝑜1𝑜=1𝑜
24 12 12 funsn Fun1𝑜1𝑜
25 12 snid 1𝑜1𝑜
26 12 dmsnop dom1𝑜1𝑜=1𝑜
27 25 26 eleqtrri 1𝑜dom1𝑜1𝑜
28 funbrfvb Fun1𝑜1𝑜1𝑜dom1𝑜1𝑜1𝑜1𝑜1𝑜=1𝑜1𝑜1𝑜1𝑜1𝑜
29 24 27 28 mp2an 1𝑜1𝑜1𝑜=1𝑜1𝑜1𝑜1𝑜1𝑜
30 23 29 mpbi 1𝑜1𝑜1𝑜1𝑜
31 breq12 s=1𝑜t=1𝑜s1𝑜1𝑜t1𝑜1𝑜1𝑜1𝑜
32 12 12 31 spc2ev 1𝑜1𝑜1𝑜1𝑜sts1𝑜1𝑜t
33 30 32 ax-mp sts1𝑜1𝑜t
34 breq x=1𝑜1𝑜sxts1𝑜1𝑜t
35 34 2exbidv x=1𝑜1𝑜stsxtsts1𝑜1𝑜t
36 33 35 mpbiri x=1𝑜1𝑜stsxt
37 ssid 1𝑜1𝑜
38 12 rnsnop ran1𝑜1𝑜=1𝑜
39 37 38 26 3sstr4i ran1𝑜1𝑜dom1𝑜1𝑜
40 rneq x=1𝑜1𝑜ranx=ran1𝑜1𝑜
41 dmeq x=1𝑜1𝑜domx=dom1𝑜1𝑜
42 40 41 sseq12d x=1𝑜1𝑜ranxdomxran1𝑜1𝑜dom1𝑜1𝑜
43 39 42 mpbiri x=1𝑜1𝑜ranxdomx
44 pm5.5 stsxtranxdomxstsxtranxdomxfnωfnxfsucnfnωfnxfsucn
45 36 43 44 syl2anc x=1𝑜1𝑜stsxtranxdomxfnωfnxfsucnfnωfnxfsucn
46 breq x=1𝑜1𝑜fnxfsucnfn1𝑜1𝑜fsucn
47 46 ralbidv x=1𝑜1𝑜nωfnxfsucnnωfn1𝑜1𝑜fsucn
48 47 exbidv x=1𝑜1𝑜fnωfnxfsucnfnωfn1𝑜1𝑜fsucn
49 45 48 bitrd x=1𝑜1𝑜stsxtranxdomxfnωfnxfsucnfnωfn1𝑜1𝑜fsucn
50 ax-dc stsxtranxdomxfnωfnxfsucn
51 22 49 50 vtocl fnωfn1𝑜1𝑜fsucn
52 21 51 exlimiiv ωV