Metamath Proof Explorer


Theorem deg1suble

Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1suble.b B=BaseY
deg1suble.m -˙=-Y
deg1suble.f φFB
deg1suble.g φGB
Assertion deg1suble φDF-˙GifDFDGDGDF

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1suble.b B=BaseY
5 deg1suble.m -˙=-Y
6 deg1suble.f φFB
7 deg1suble.g φGB
8 eqid +Y=+Y
9 1 ply1ring RRingYRing
10 ringgrp YRingYGrp
11 3 9 10 3syl φYGrp
12 eqid invgY=invgY
13 4 12 grpinvcl YGrpGBinvgYGB
14 11 7 13 syl2anc φinvgYGB
15 1 2 3 4 8 6 14 deg1addle φDF+YinvgYGifDFDinvgYGDinvgYGDF
16 4 8 12 5 grpsubval FBGBF-˙G=F+YinvgYG
17 6 7 16 syl2anc φF-˙G=F+YinvgYG
18 17 fveq2d φDF-˙G=DF+YinvgYG
19 1 2 3 4 12 7 deg1invg φDinvgYG=DG
20 19 eqcomd φDG=DinvgYG
21 20 breq2d φDFDGDFDinvgYG
22 21 20 ifbieq1d φifDFDGDGDF=ifDFDinvgYGDinvgYGDF
23 15 18 22 3brtr4d φDF-˙GifDFDGDGDF