Metamath Proof Explorer


Theorem dfac5lem1

Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)

Ref Expression
Assertion dfac5lem1 ∃!vvw×wy∃!ggwwgy

Proof

Step Hyp Ref Expression
1 elin vw×wyvw×wvy
2 elxp vw×wtgv=tgtwgw
3 excom tgv=tgtwgwgtv=tgtwgw
4 2 3 bitri vw×wgtv=tgtwgw
5 4 anbi1i vw×wvygtv=tgtwgwvy
6 19.41vv gtv=tgtwgwvygtv=tgtwgwvy
7 an32 v=tgtwgwvyv=tgvytwgw
8 eleq1 v=tgvytgy
9 8 pm5.32i v=tgvyv=tgtgy
10 velsn twt=w
11 10 anbi1i twgwt=wgw
12 9 11 anbi12i v=tgvytwgwv=tgtgyt=wgw
13 an4 v=tgtgyt=wgwv=tgt=wtgygw
14 ancom v=tgt=wt=wv=tg
15 ancom tgygwgwtgy
16 14 15 anbi12i v=tgt=wtgygwt=wv=tggwtgy
17 anass t=wv=tggwtgyt=wv=tggwtgy
18 13 16 17 3bitri v=tgtgyt=wgwt=wv=tggwtgy
19 7 12 18 3bitri v=tgtwgwvyt=wv=tggwtgy
20 19 exbii tv=tgtwgwvytt=wv=tggwtgy
21 opeq1 t=wtg=wg
22 21 eqeq2d t=wv=tgv=wg
23 21 eleq1d t=wtgywgy
24 23 anbi2d t=wgwtgygwwgy
25 22 24 anbi12d t=wv=tggwtgyv=wggwwgy
26 25 equsexvw tt=wv=tggwtgyv=wggwwgy
27 20 26 bitri tv=tgtwgwvyv=wggwwgy
28 27 exbii gtv=tgtwgwvygv=wggwwgy
29 6 28 bitr3i gtv=tgtwgwvygv=wggwwgy
30 1 5 29 3bitri vw×wygv=wggwwgy
31 30 eubii ∃!vvw×wy∃!vgv=wggwwgy
32 vex wV
33 32 euop2 ∃!vgv=wggwwgy∃!ggwwgy
34 31 33 bitri ∃!vvw×wy∃!ggwwgy