Metamath Proof Explorer


Theorem dfac5lem2

Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)

Ref Expression
Hypothesis dfac5lem.1 A=u|uthu=t×t
Assertion dfac5lem2 wgAwhgw

Proof

Step Hyp Ref Expression
1 dfac5lem.1 A=u|uthu=t×t
2 1 unieqi A=u|uthu=t×t
3 2 eleq2i wgAwgu|uthu=t×t
4 eluniab wgu|uthu=t×tuwguuthu=t×t
5 r19.42v thwguuu=t×twguuthu=t×t
6 anass wguuthu=t×twguuthu=t×t
7 5 6 bitr2i wguuthu=t×tthwguuu=t×t
8 7 exbii uwguuthu=t×tuthwguuu=t×t
9 rexcom4 thuwguuu=t×tuthwguuu=t×t
10 df-rex thuwguuu=t×ttthuwguuu=t×t
11 9 10 bitr3i uthwguuu=t×ttthuwguuu=t×t
12 4 8 11 3bitri wgu|uthu=t×ttthuwguuu=t×t
13 ancom wguuu=t×tu=t×twguu
14 ne0i wguu
15 14 pm4.71i wguwguu
16 15 anbi2i u=t×twguu=t×twguu
17 13 16 bitr4i wguuu=t×tu=t×twgu
18 17 exbii uwguuu=t×tuu=t×twgu
19 vsnex tV
20 vex tV
21 19 20 xpex t×tV
22 eleq2 u=t×twguwgt×t
23 21 22 ceqsexv uu=t×twguwgt×t
24 18 23 bitri uwguuu=t×twgt×t
25 24 anbi2i thuwguuu=t×tthwgt×t
26 opelxp wgt×twtgt
27 velsn wtw=t
28 equcom w=tt=w
29 27 28 bitri wtt=w
30 29 anbi1i wtgtt=wgt
31 26 30 bitri wgt×tt=wgt
32 31 anbi2i thwgt×ttht=wgt
33 an12 tht=wgtt=wthgt
34 25 32 33 3bitri thuwguuu=t×tt=wthgt
35 34 exbii tthuwguuu=t×ttt=wthgt
36 vex wV
37 elequ1 t=wthwh
38 eleq2 t=wgtgw
39 37 38 anbi12d t=wthgtwhgw
40 36 39 ceqsexv tt=wthgtwhgw
41 35 40 bitri tthuwguuu=t×twhgw
42 3 12 41 3bitri wgAwhgw