Metamath Proof Explorer


Theorem dfafn5a

Description: Representation of a function in terms of its values, analogous to dffn5 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfafn5a F Fn A F = x A F ''' x

Proof

Step Hyp Ref Expression
1 fnrel F Fn A Rel F
2 dfrel4v Rel F F = x y | x F y
3 1 2 sylib F Fn A F = x y | x F y
4 fnbr F Fn A x F y x A
5 4 ex F Fn A x F y x A
6 5 pm4.71rd F Fn A x F y x A x F y
7 eqcom y = F ''' x F ''' x = y
8 fnbrafvb F Fn A x A F ''' x = y x F y
9 7 8 syl5bb F Fn A x A y = F ''' x x F y
10 9 pm5.32da F Fn A x A y = F ''' x x A x F y
11 6 10 bitr4d F Fn A x F y x A y = F ''' x
12 11 opabbidv F Fn A x y | x F y = x y | x A y = F ''' x
13 3 12 eqtrd F Fn A F = x y | x A y = F ''' x
14 df-mpt x A F ''' x = x y | x A y = F ''' x
15 13 14 eqtr4di F Fn A F = x A F ''' x