Metamath Proof Explorer


Theorem dfdm5

Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion dfdm5 domA=1stV×VA

Proof

Step Hyp Ref Expression
1 excom ypzp=zyp1stxpApyzp=zyp1stxpA
2 opex zyV
3 breq1 p=zyp1stxzy1stx
4 eleq1 p=zypAzyA
5 3 4 anbi12d p=zyp1stxpAzy1stxzyA
6 vex zV
7 vex yV
8 6 7 br1steq zy1stxx=z
9 equcom x=zz=x
10 8 9 bitri zy1stxz=x
11 10 anbi1i zy1stxzyAz=xzyA
12 5 11 bitrdi p=zyp1stxpAz=xzyA
13 2 12 ceqsexv pp=zyp1stxpAz=xzyA
14 13 exbii zpp=zyp1stxpAzz=xzyA
15 excom zpp=zyp1stxpApzp=zyp1stxpA
16 vex xV
17 opeq1 z=xzy=xy
18 17 eleq1d z=xzyAxyA
19 16 18 ceqsexv zz=xzyAxyA
20 14 15 19 3bitr3ri xyApzp=zyp1stxpA
21 20 exbii yxyAypzp=zyp1stxpA
22 ancom pAp1stV×Vxp1stV×VxpA
23 anass yzp=zyp1stxpAyzp=zyp1stxpA
24 16 brresi p1stV×VxpV×Vp1stx
25 elvv pV×Vzyp=zy
26 excom zyp=zyyzp=zy
27 25 26 bitri pV×Vyzp=zy
28 27 anbi1i pV×Vp1stxyzp=zyp1stx
29 24 28 bitri p1stV×Vxyzp=zyp1stx
30 29 anbi1i p1stV×VxpAyzp=zyp1stxpA
31 19.41vv yzp=zyp1stxpAyzp=zyp1stxpA
32 23 30 31 3bitr4i p1stV×VxpAyzp=zyp1stxpA
33 22 32 bitri pAp1stV×Vxyzp=zyp1stxpA
34 33 exbii ppAp1stV×Vxpyzp=zyp1stxpA
35 1 21 34 3bitr4i yxyAppAp1stV×Vx
36 16 eldm2 xdomAyxyA
37 16 elima2 x1stV×VAppAp1stV×Vx
38 35 36 37 3bitr4i xdomAx1stV×VA
39 38 eqriv domA=1stV×VA