Metamath Proof Explorer


Theorem dfno2

Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion dfno2 No=f𝒫On×1𝑜2𝑜|FunfdomfOn

Proof

Step Hyp Ref Expression
1 fssxp f:x1𝑜2𝑜fx×1𝑜2𝑜
2 1 adantl xOnf:x1𝑜2𝑜fx×1𝑜2𝑜
3 onss xOnxOn
4 3 adantr xOnf:x1𝑜2𝑜xOn
5 xpss1 xOnx×1𝑜2𝑜On×1𝑜2𝑜
6 4 5 syl xOnf:x1𝑜2𝑜x×1𝑜2𝑜On×1𝑜2𝑜
7 2 6 sstrd xOnf:x1𝑜2𝑜fOn×1𝑜2𝑜
8 velpw f𝒫On×1𝑜2𝑜fOn×1𝑜2𝑜
9 7 8 sylibr xOnf:x1𝑜2𝑜f𝒫On×1𝑜2𝑜
10 ffun f:x1𝑜2𝑜Funf
11 10 adantl xOnf:x1𝑜2𝑜Funf
12 fdm f:x1𝑜2𝑜domf=x
13 12 adantl xOnf:x1𝑜2𝑜domf=x
14 simpl xOnf:x1𝑜2𝑜xOn
15 13 14 eqeltrd xOnf:x1𝑜2𝑜domfOn
16 9 11 15 jca32 xOnf:x1𝑜2𝑜f𝒫On×1𝑜2𝑜FunfdomfOn
17 16 rexlimiva xOnf:x1𝑜2𝑜f𝒫On×1𝑜2𝑜FunfdomfOn
18 simprr f𝒫On×1𝑜2𝑜FunfdomfOndomfOn
19 feq2 x=domff:x1𝑜2𝑜f:domf1𝑜2𝑜
20 19 adantl f𝒫On×1𝑜2𝑜FunfdomfOnx=domff:x1𝑜2𝑜f:domf1𝑜2𝑜
21 simpl FunfdomfOnFunf
22 elpwi f𝒫On×1𝑜2𝑜fOn×1𝑜2𝑜
23 funssxp FunffOn×1𝑜2𝑜f:domf1𝑜2𝑜domfOn
24 23 simplbi FunffOn×1𝑜2𝑜f:domf1𝑜2𝑜
25 21 22 24 syl2anr f𝒫On×1𝑜2𝑜FunfdomfOnf:domf1𝑜2𝑜
26 18 20 25 rspcedvd f𝒫On×1𝑜2𝑜FunfdomfOnxOnf:x1𝑜2𝑜
27 17 26 impbii xOnf:x1𝑜2𝑜f𝒫On×1𝑜2𝑜FunfdomfOn
28 27 abbii f|xOnf:x1𝑜2𝑜=f|f𝒫On×1𝑜2𝑜FunfdomfOn
29 df-no No=f|xOnf:x1𝑜2𝑜
30 df-rab f𝒫On×1𝑜2𝑜|FunfdomfOn=f|f𝒫On×1𝑜2𝑜FunfdomfOn
31 28 29 30 3eqtr4i No=f𝒫On×1𝑜2𝑜|FunfdomfOn