Metamath Proof Explorer


Theorem dfrn5

Description: Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion dfrn5 ranA=2ndV×VA

Proof

Step Hyp Ref Expression
1 excom ypzp=yzp2ndxpApyzp=yzp2ndxpA
2 opex yzV
3 breq1 p=yzp2ndxyz2ndx
4 eleq1 p=yzpAyzA
5 3 4 anbi12d p=yzp2ndxpAyz2ndxyzA
6 vex yV
7 vex zV
8 6 7 br2ndeq yz2ndxx=z
9 equcom x=zz=x
10 8 9 bitri yz2ndxz=x
11 10 anbi1i yz2ndxyzAz=xyzA
12 5 11 bitrdi p=yzp2ndxpAz=xyzA
13 2 12 ceqsexv pp=yzp2ndxpAz=xyzA
14 13 exbii zpp=yzp2ndxpAzz=xyzA
15 excom zpp=yzp2ndxpApzp=yzp2ndxpA
16 vex xV
17 opeq2 z=xyz=yx
18 17 eleq1d z=xyzAyxA
19 16 18 ceqsexv zz=xyzAyxA
20 14 15 19 3bitr3ri yxApzp=yzp2ndxpA
21 20 exbii yyxAypzp=yzp2ndxpA
22 ancom pAp2ndV×Vxp2ndV×VxpA
23 anass yzp=yzp2ndxpAyzp=yzp2ndxpA
24 16 brresi p2ndV×VxpV×Vp2ndx
25 elvv pV×Vyzp=yz
26 25 anbi1i pV×Vp2ndxyzp=yzp2ndx
27 24 26 bitri p2ndV×Vxyzp=yzp2ndx
28 27 anbi1i p2ndV×VxpAyzp=yzp2ndxpA
29 19.41vv yzp=yzp2ndxpAyzp=yzp2ndxpA
30 23 28 29 3bitr4i p2ndV×VxpAyzp=yzp2ndxpA
31 22 30 bitri pAp2ndV×Vxyzp=yzp2ndxpA
32 31 exbii ppAp2ndV×Vxpyzp=yzp2ndxpA
33 1 21 32 3bitr4i yyxAppAp2ndV×Vx
34 16 elrn2 xranAyyxA
35 16 elima2 x2ndV×VAppAp2ndV×Vx
36 33 34 35 3bitr4i xranAx2ndV×VA
37 36 eqriv ranA=2ndV×VA