Step |
Hyp |
Ref |
Expression |
1 |
|
dfxlim2v.1 |
|
2 |
|
dfxlim2v.2 |
|
3 |
|
dfxlim2v.3 |
|
4 |
|
simplr |
|
5 |
1
|
adantr |
|
6 |
3
|
adantr |
|
7 |
|
simpr |
|
8 |
5 2 6 7
|
xlimclim2 |
|
9 |
8
|
adantlr |
|
10 |
4 9
|
mpbid |
|
11 |
10
|
3mix1d |
|
12 |
|
simpr |
|
13 |
|
simpl |
|
14 |
|
simpr |
|
15 |
13 14
|
breqtrd |
|
16 |
15
|
adantll |
|
17 |
|
nfcv |
|
18 |
17 1 2 3
|
xlimmnf |
|
19 |
18
|
ad2antrr |
|
20 |
16 19
|
mpbid |
|
21 |
|
3mix2 |
|
22 |
12 20 21
|
syl2anc |
|
23 |
22
|
adantlr |
|
24 |
|
simpll |
|
25 |
|
xlimcl |
|
26 |
25
|
ad3antlr |
|
27 |
|
simplr |
|
28 |
|
neqne |
|
29 |
28
|
adantl |
|
30 |
26 27 29
|
xrnmnfpnf |
|
31 |
|
simpr |
|
32 |
|
simpl |
|
33 |
|
simpr |
|
34 |
32 33
|
breqtrd |
|
35 |
34
|
adantll |
|
36 |
17 1 2 3
|
xlimpnf |
|
37 |
36
|
ad2antrr |
|
38 |
35 37
|
mpbid |
|
39 |
|
3mix3 |
|
40 |
31 38 39
|
syl2anc |
|
41 |
24 30 40
|
syl2anc |
|
42 |
23 41
|
pm2.61dan |
|
43 |
11 42
|
pm2.61dan |
|
44 |
1
|
adantr |
|
45 |
3
|
adantr |
|
46 |
|
simpr |
|
47 |
44 2 45 46
|
climxlim2 |
|
48 |
18
|
biimpar |
|
49 |
48
|
adantrl |
|
50 |
|
simprl |
|
51 |
49 50
|
breqtrrd |
|
52 |
36
|
biimpar |
|
53 |
52
|
adantrl |
|
54 |
|
simprl |
|
55 |
53 54
|
breqtrrd |
|
56 |
47 51 55
|
3jaodan |
|
57 |
43 56
|
impbida |
|