| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfxlim2v.1 |
|
| 2 |
|
dfxlim2v.2 |
|
| 3 |
|
dfxlim2v.3 |
|
| 4 |
|
simplr |
|
| 5 |
1
|
adantr |
|
| 6 |
3
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
5 2 6 7
|
xlimclim2 |
|
| 9 |
8
|
adantlr |
|
| 10 |
4 9
|
mpbid |
|
| 11 |
10
|
3mix1d |
|
| 12 |
|
simpr |
|
| 13 |
|
simpl |
|
| 14 |
|
simpr |
|
| 15 |
13 14
|
breqtrd |
|
| 16 |
15
|
adantll |
|
| 17 |
|
nfcv |
|
| 18 |
17 1 2 3
|
xlimmnf |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
16 19
|
mpbid |
|
| 21 |
|
3mix2 |
|
| 22 |
12 20 21
|
syl2anc |
|
| 23 |
22
|
adantlr |
|
| 24 |
|
simpll |
|
| 25 |
|
xlimcl |
|
| 26 |
25
|
ad3antlr |
|
| 27 |
|
simplr |
|
| 28 |
|
neqne |
|
| 29 |
28
|
adantl |
|
| 30 |
26 27 29
|
xrnmnfpnf |
|
| 31 |
|
simpr |
|
| 32 |
|
simpl |
|
| 33 |
|
simpr |
|
| 34 |
32 33
|
breqtrd |
|
| 35 |
34
|
adantll |
|
| 36 |
17 1 2 3
|
xlimpnf |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
35 37
|
mpbid |
|
| 39 |
|
3mix3 |
|
| 40 |
31 38 39
|
syl2anc |
|
| 41 |
24 30 40
|
syl2anc |
|
| 42 |
23 41
|
pm2.61dan |
|
| 43 |
11 42
|
pm2.61dan |
|
| 44 |
1
|
adantr |
|
| 45 |
3
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
44 2 45 46
|
climxlim2 |
|
| 48 |
18
|
biimpar |
|
| 49 |
48
|
adantrl |
|
| 50 |
|
simprl |
|
| 51 |
49 50
|
breqtrrd |
|
| 52 |
36
|
biimpar |
|
| 53 |
52
|
adantrl |
|
| 54 |
|
simprl |
|
| 55 |
53 54
|
breqtrrd |
|
| 56 |
47 51 55
|
3jaodan |
|
| 57 |
43 56
|
impbida |
|