Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfxlim2v.1 | |
|
dfxlim2v.2 | |
||
dfxlim2v.3 | |
||
Assertion | dfxlim2v | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfxlim2v.1 | |
|
2 | dfxlim2v.2 | |
|
3 | dfxlim2v.3 | |
|
4 | simplr | |
|
5 | 1 | adantr | |
6 | 3 | adantr | |
7 | simpr | |
|
8 | 5 2 6 7 | xlimclim2 | |
9 | 8 | adantlr | |
10 | 4 9 | mpbid | |
11 | 10 | 3mix1d | |
12 | simpr | |
|
13 | simpl | |
|
14 | simpr | |
|
15 | 13 14 | breqtrd | |
16 | 15 | adantll | |
17 | nfcv | |
|
18 | 17 1 2 3 | xlimmnf | |
19 | 18 | ad2antrr | |
20 | 16 19 | mpbid | |
21 | 3mix2 | |
|
22 | 12 20 21 | syl2anc | |
23 | 22 | adantlr | |
24 | simpll | |
|
25 | xlimcl | |
|
26 | 25 | ad3antlr | |
27 | simplr | |
|
28 | neqne | |
|
29 | 28 | adantl | |
30 | 26 27 29 | xrnmnfpnf | |
31 | simpr | |
|
32 | simpl | |
|
33 | simpr | |
|
34 | 32 33 | breqtrd | |
35 | 34 | adantll | |
36 | 17 1 2 3 | xlimpnf | |
37 | 36 | ad2antrr | |
38 | 35 37 | mpbid | |
39 | 3mix3 | |
|
40 | 31 38 39 | syl2anc | |
41 | 24 30 40 | syl2anc | |
42 | 23 41 | pm2.61dan | |
43 | 11 42 | pm2.61dan | |
44 | 1 | adantr | |
45 | 3 | adantr | |
46 | simpr | |
|
47 | 44 2 45 46 | climxlim2 | |
48 | 18 | biimpar | |
49 | 48 | adantrl | |
50 | simprl | |
|
51 | 49 50 | breqtrrd | |
52 | 36 | biimpar | |
53 | 52 | adantrl | |
54 | simprl | |
|
55 | 53 54 | breqtrrd | |
56 | 47 51 55 | 3jaodan | |
57 | 43 56 | impbida | |