Metamath Proof Explorer


Theorem dfxlim2v

Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses dfxlim2v.1 φM
dfxlim2v.2 Z=M
dfxlim2v.3 φF:Z*
Assertion dfxlim2v φF*AFAA=−∞xjZkjFkxA=+∞xjZkjxFk

Proof

Step Hyp Ref Expression
1 dfxlim2v.1 φM
2 dfxlim2v.2 Z=M
3 dfxlim2v.3 φF:Z*
4 simplr φF*AAF*A
5 1 adantr φAM
6 3 adantr φAF:Z*
7 simpr φAA
8 5 2 6 7 xlimclim2 φAF*AFA
9 8 adantlr φF*AAF*AFA
10 4 9 mpbid φF*AAFA
11 10 3mix1d φF*AAFAA=−∞xjZkjFkxA=+∞xjZkjxFk
12 simpr φF*AA=−∞A=−∞
13 simpl F*AA=−∞F*A
14 simpr F*AA=−∞A=−∞
15 13 14 breqtrd F*AA=−∞F*−∞
16 15 adantll φF*AA=−∞F*−∞
17 nfcv _kF
18 17 1 2 3 xlimmnf φF*−∞xjZkjFkx
19 18 ad2antrr φF*AA=−∞F*−∞xjZkjFkx
20 16 19 mpbid φF*AA=−∞xjZkjFkx
21 3mix2 A=−∞xjZkjFkxFAA=−∞xjZkjFkxA=+∞xjZkjxFk
22 12 20 21 syl2anc φF*AA=−∞FAA=−∞xjZkjFkxA=+∞xjZkjxFk
23 22 adantlr φF*A¬AA=−∞FAA=−∞xjZkjFkxA=+∞xjZkjxFk
24 simpll φF*A¬A¬A=−∞φF*A
25 xlimcl F*AA*
26 25 ad3antlr φF*A¬A¬A=−∞A*
27 simplr φF*A¬A¬A=−∞¬A
28 neqne ¬A=−∞A−∞
29 28 adantl φF*A¬A¬A=−∞A−∞
30 26 27 29 xrnmnfpnf φF*A¬A¬A=−∞A=+∞
31 simpr φF*AA=+∞A=+∞
32 simpl F*AA=+∞F*A
33 simpr F*AA=+∞A=+∞
34 32 33 breqtrd F*AA=+∞F*+∞
35 34 adantll φF*AA=+∞F*+∞
36 17 1 2 3 xlimpnf φF*+∞xjZkjxFk
37 36 ad2antrr φF*AA=+∞F*+∞xjZkjxFk
38 35 37 mpbid φF*AA=+∞xjZkjxFk
39 3mix3 A=+∞xjZkjxFkFAA=−∞xjZkjFkxA=+∞xjZkjxFk
40 31 38 39 syl2anc φF*AA=+∞FAA=−∞xjZkjFkxA=+∞xjZkjxFk
41 24 30 40 syl2anc φF*A¬A¬A=−∞FAA=−∞xjZkjFkxA=+∞xjZkjxFk
42 23 41 pm2.61dan φF*A¬AFAA=−∞xjZkjFkxA=+∞xjZkjxFk
43 11 42 pm2.61dan φF*AFAA=−∞xjZkjFkxA=+∞xjZkjxFk
44 1 adantr φFAM
45 3 adantr φFAF:Z*
46 simpr φFAFA
47 44 2 45 46 climxlim2 φFAF*A
48 18 biimpar φxjZkjFkxF*−∞
49 48 adantrl φA=−∞xjZkjFkxF*−∞
50 simprl φA=−∞xjZkjFkxA=−∞
51 49 50 breqtrrd φA=−∞xjZkjFkxF*A
52 36 biimpar φxjZkjxFkF*+∞
53 52 adantrl φA=+∞xjZkjxFkF*+∞
54 simprl φA=+∞xjZkjxFkA=+∞
55 53 54 breqtrrd φA=+∞xjZkjxFkF*A
56 47 51 55 3jaodan φFAA=−∞xjZkjFkxA=+∞xjZkjxFkF*A
57 43 56 impbida φF*AFAA=−∞xjZkjFkxA=+∞xjZkjxFk