Metamath Proof Explorer


Theorem dgraa0p

Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion dgraa0p A𝔸PPolydegP<deg𝔸APA=0P=0𝑝

Proof

Step Hyp Ref Expression
1 simpl3 A𝔸PPolydegP<deg𝔸AP0𝑝degP<deg𝔸A
2 simpl2 A𝔸PPolydegP<deg𝔸AP0𝑝PPoly
3 dgrcl PPolydegP0
4 2 3 syl A𝔸PPolydegP<deg𝔸AP0𝑝degP0
5 4 nn0red A𝔸PPolydegP<deg𝔸AP0𝑝degP
6 simpl1 A𝔸PPolydegP<deg𝔸AP0𝑝A𝔸
7 dgraacl A𝔸deg𝔸A
8 6 7 syl A𝔸PPolydegP<deg𝔸AP0𝑝deg𝔸A
9 8 nnred A𝔸PPolydegP<deg𝔸AP0𝑝deg𝔸A
10 5 9 ltnled A𝔸PPolydegP<deg𝔸AP0𝑝degP<deg𝔸A¬deg𝔸AdegP
11 1 10 mpbid A𝔸PPolydegP<deg𝔸AP0𝑝¬deg𝔸AdegP
12 simpl2 A𝔸PPolydegP<deg𝔸AP0𝑝PA=0PPoly
13 simprl A𝔸PPolydegP<deg𝔸AP0𝑝PA=0P0𝑝
14 simpl1 A𝔸PPolydegP<deg𝔸AP0𝑝PA=0A𝔸
15 aacn A𝔸A
16 14 15 syl A𝔸PPolydegP<deg𝔸AP0𝑝PA=0A
17 simprr A𝔸PPolydegP<deg𝔸AP0𝑝PA=0PA=0
18 dgraaub PPolyP0𝑝APA=0deg𝔸AdegP
19 12 13 16 17 18 syl22anc A𝔸PPolydegP<deg𝔸AP0𝑝PA=0deg𝔸AdegP
20 19 expr A𝔸PPolydegP<deg𝔸AP0𝑝PA=0deg𝔸AdegP
21 11 20 mtod A𝔸PPolydegP<deg𝔸AP0𝑝¬PA=0
22 21 ex A𝔸PPolydegP<deg𝔸AP0𝑝¬PA=0
23 22 necon4ad A𝔸PPolydegP<deg𝔸APA=0P=0𝑝
24 0pval A0𝑝A=0
25 15 24 syl A𝔸0𝑝A=0
26 fveq1 P=0𝑝PA=0𝑝A
27 26 eqeq1d P=0𝑝PA=00𝑝A=0
28 25 27 syl5ibrcom A𝔸P=0𝑝PA=0
29 28 3ad2ant1 A𝔸PPolydegP<deg𝔸AP=0𝑝PA=0
30 23 29 impbid A𝔸PPolydegP<deg𝔸APA=0P=0𝑝