Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | dgraa0p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 | |
|
2 | simpl2 | |
|
3 | dgrcl | |
|
4 | 2 3 | syl | |
5 | 4 | nn0red | |
6 | simpl1 | |
|
7 | dgraacl | |
|
8 | 6 7 | syl | |
9 | 8 | nnred | |
10 | 5 9 | ltnled | |
11 | 1 10 | mpbid | |
12 | simpl2 | |
|
13 | simprl | |
|
14 | simpl1 | |
|
15 | aacn | |
|
16 | 14 15 | syl | |
17 | simprr | |
|
18 | dgraaub | |
|
19 | 12 13 16 17 18 | syl22anc | |
20 | 19 | expr | |
21 | 11 20 | mtod | |
22 | 21 | ex | |
23 | 22 | necon4ad | |
24 | 0pval | |
|
25 | 15 24 | syl | |
26 | fveq1 | |
|
27 | 26 | eqeq1d | |
28 | 25 27 | syl5ibrcom | |
29 | 28 | 3ad2ant1 | |
30 | 23 29 | impbid | |