Metamath Proof Explorer


Theorem diag2f1o

Description: If D is terminal, the morphism part of a diagonal functor is bijective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diag2f1o.l L = C Δ func D
diag2f1o.a A = Base C
diag2f1o.h H = Hom C
diag2f1o.x φ X A
diag2f1o.y φ Y A
diag2f1o.n N = D Nat C
diag2f1o.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
diag2f1o.c φ C Cat
Assertion diag2f1o φ X 2 nd L Y : X H Y 1-1 onto 1 st L X N 1 st L Y

Proof

Step Hyp Ref Expression
1 diag2f1o.l L = C Δ func D
2 diag2f1o.a A = Base C
3 diag2f1o.h H = Hom C
4 diag2f1o.x φ X A
5 diag2f1o.y φ Y A
6 diag2f1o.n N = D Nat C
7 diag2f1o.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
8 diag2f1o.c φ C Cat
9 eqid Base D = Base D
10 7 termccd φ D Cat
11 9 istermc2 Could not format ( D e. TermCat <-> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) : No typesetting found for |- ( D e. TermCat <-> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) with typecode |-
12 7 11 sylib φ D ThinCat ∃! z z Base D
13 12 simprd φ ∃! z z Base D
14 euex ∃! z z Base D z z Base D
15 13 14 syl φ z z Base D
16 n0 Base D z z Base D
17 15 16 sylibr φ Base D
18 1 2 9 3 8 10 4 5 17 6 diag2f1 φ X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y
19 f1f X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y X 2 nd L Y : X H Y 1 st L X N 1 st L Y
20 18 19 syl φ X 2 nd L Y : X H Y 1 st L X N 1 st L Y
21 7 9 termcbas φ z Base D = z
22 21 adantr φ m 1 st L X N 1 st L Y z Base D = z
23 fveq2 f = m z X 2 nd L Y f = X 2 nd L Y m z
24 23 eqeq2d f = m z m = X 2 nd L Y f m = X 2 nd L Y m z
25 4 ad2antrr φ m 1 st L X N 1 st L Y Base D = z X A
26 5 ad2antrr φ m 1 st L X N 1 st L Y Base D = z Y A
27 7 ad2antrr Could not format ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> D e. TermCat ) : No typesetting found for |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> D e. TermCat ) with typecode |-
28 simplr φ m 1 st L X N 1 st L Y Base D = z m 1 st L X N 1 st L Y
29 vsnid z z
30 simpr φ m 1 st L X N 1 st L Y Base D = z Base D = z
31 29 30 eleqtrrid φ m 1 st L X N 1 st L Y Base D = z z Base D
32 eqid m z = m z
33 1 2 3 25 26 6 27 28 9 31 32 diag2f1olem φ m 1 st L X N 1 st L Y Base D = z m z X H Y m = X 2 nd L Y m z
34 33 simpld φ m 1 st L X N 1 st L Y Base D = z m z X H Y
35 33 simprd φ m 1 st L X N 1 st L Y Base D = z m = X 2 nd L Y m z
36 24 34 35 rspcedvdw φ m 1 st L X N 1 st L Y Base D = z f X H Y m = X 2 nd L Y f
37 22 36 exlimddv φ m 1 st L X N 1 st L Y f X H Y m = X 2 nd L Y f
38 37 ralrimiva φ m 1 st L X N 1 st L Y f X H Y m = X 2 nd L Y f
39 dffo3 X 2 nd L Y : X H Y onto 1 st L X N 1 st L Y X 2 nd L Y : X H Y 1 st L X N 1 st L Y m 1 st L X N 1 st L Y f X H Y m = X 2 nd L Y f
40 20 38 39 sylanbrc φ X 2 nd L Y : X H Y onto 1 st L X N 1 st L Y
41 df-f1o X 2 nd L Y : X H Y 1-1 onto 1 st L X N 1 st L Y X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y X 2 nd L Y : X H Y onto 1 st L X N 1 st L Y
42 18 40 41 sylanbrc φ X 2 nd L Y : X H Y 1-1 onto 1 st L X N 1 st L Y