Metamath Proof Explorer


Theorem diameetN

Description: Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diam.m ˙=meetK
diam.h H=LHypK
diam.i I=DIsoAKW
Assertion diameetN KHLWHXdomIYdomIIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 diam.m ˙=meetK
2 diam.h H=LHypK
3 diam.i I=DIsoAKW
4 eqid glbK=glbK
5 simpll KHLWHXdomIYdomIKHL
6 eqid BaseK=BaseK
7 6 2 3 diadmclN KHLWHXdomIXBaseK
8 7 adantrr KHLWHXdomIYdomIXBaseK
9 6 2 3 diadmclN KHLWHYdomIYBaseK
10 9 adantrl KHLWHXdomIYdomIYBaseK
11 4 1 5 8 10 meetval KHLWHXdomIYdomIX˙Y=glbKXY
12 11 fveq2d KHLWHXdomIYdomIIX˙Y=IglbKXY
13 simpl KHLWHXdomIYdomIKHLWH
14 prssi XdomIYdomIXYdomI
15 14 adantl KHLWHXdomIYdomIXYdomI
16 prnzg XdomIXY
17 16 ad2antrl KHLWHXdomIYdomIXY
18 4 2 3 diaglbN KHLWHXYdomIXYIglbKXY=xXYIx
19 13 15 17 18 syl12anc KHLWHXdomIYdomIIglbKXY=xXYIx
20 fveq2 x=XIx=IX
21 fveq2 x=YIx=IY
22 20 21 iinxprg XdomIYdomIxXYIx=IXIY
23 22 adantl KHLWHXdomIYdomIxXYIx=IXIY
24 12 19 23 3eqtrd KHLWHXdomIYdomIIX˙Y=IXIY