Metamath Proof Explorer


Theorem dih0

Description: The value of isomorphism H at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dih0.z 0˙=0.K
dih0.h H=LHypK
dih0.i I=DIsoHKW
dih0.u U=DVecHKW
dih0.o O=0U
Assertion dih0 KHLWHI0˙=O

Proof

Step Hyp Ref Expression
1 dih0.z 0˙=0.K
2 dih0.h H=LHypK
3 dih0.i I=DIsoHKW
4 dih0.u U=DVecHKW
5 dih0.o O=0U
6 id KHLWHKHLWH
7 hlop KHLKOP
8 7 adantr KHLWHKOP
9 eqid BaseK=BaseK
10 9 1 op0cl KOP0˙BaseK
11 8 10 syl KHLWH0˙BaseK
12 9 2 lhpbase WHWBaseK
13 eqid K=K
14 9 13 1 op0le KOPWBaseK0˙KW
15 7 12 14 syl2an KHLWH0˙KW
16 eqid DIsoBKW=DIsoBKW
17 9 13 2 3 16 dihvalb KHLWH0˙BaseK0˙KWI0˙=DIsoBKW0˙
18 6 11 15 17 syl12anc KHLWHI0˙=DIsoBKW0˙
19 1 2 16 4 5 dib0 KHLWHDIsoBKW0˙=O
20 18 19 eqtrd KHLWHI0˙=O